
Table of Contents

Foreword 0

Part I TreeComboBox - Overview 4

Part II Installation Instructions 5

Part III Registration Information 6

Part IV License Agreement 7

Part V Properties 8

... 81 AcceptOnDblClick

... 92 AttachedLabel

.. 10Caption

.. 10Color

.. 11Cursor

.. 11Enabled

.. 11FocusOnClick

.. 12Font

.. 12Hint

.. 12ParentColor

.. 13ParentFont

.. 13ParentShowHint

.. 14PopupMenu

.. 14Position

.. 14ShowAccelChar

.. 15ShowHint

.. 15Spacing

.. 16SpacingKind

.. 16Transparent

.. 17Visible

.. 17WordWrap

... 173 AutoComplete

... 184 AutoCompleteDelay

... 185 AutoCompleteIgnoreCase

... 196 Button

.. 19Cursor

.. 20Flat

.. 20Glyph

.. 21NumGlyphs

.. 21Hint

.. 21Kind

.. 22Width

.. 22Visible

... 227 ColorDisabled

IContents

I

© 1999-2003, UtilMind Solutions®

... 228 CursorBorder

... 239 DropDownCount

... 2310 DropDownWidth

... 2311 EmptyItemImageIndex

... 2412 EmptyItemText

... 2413 Images

... 2414 ItemIndex

... 2515 Items

... 2516 SelectedNode

... 2617 ShowEditor

... 2618 ShowTreePathInEdit

... 2619 StateImages

... 2720 TreeOptions

... 2821 TreePathSeparator

... 2822 TreeView

Part VI Methods 28

... 281 AddPath

... 292 ExportToTreeNodes

... 293 FindAbsoluteIndexByNode

... 304 FindNode

... 305 FindNodeByAbsoluteIndex

... 306 ImportFromTreeNodes

... 317 ImportFromTreeView

... 318 SelectNodeByText

... 319 SetSelection

Part VII Events 32

... 321 OnAfterDropDown

... 322 OnButtonClick

... 323 OnButtonLeftMouseDown

... 334 OnCanSelectNode

... 335 OnCloseUp

... 336 OnDropDown

... 347 OnLabelClick

... 348 OnLabelDblClick

... 359 OnMouseEnter

... 3510 OnMouseLeave

TreeComboBox componentII

© 1999-2003, UtilMind Solutions®

Index 0

IIIContents

III

© 1999-2003, UtilMind Solutions®

TreeComboBox component4

© 1999-2003, UtilMind Solutions®

1 TreeComboBox - Overview

Overview
The TreeComboBox is the combo-box with the TreeView embedded to its drop-down window. So,
instead of searching and selecting the necessary list item from huge list of drop-down window, user
will be able to see an elegant tree-like structure, select the tree nodes, expand and collapse them,
export and import the nodes to another TreeView controls and so on.

Like in standard TreeView, the TreeComboBox can display images for each tree node, show image
in editor, accept the selection either on one or double click, contains the label attached to control,
customizeable image for button + many other neat features, result of combination of ComboBox and
TreeView.

Snapshot

How to use?
Drop tcTreeComboBox control onto your form and specify the tree nodes to Items property + if the
list items should contain an icons — specify the image list to Images property. In general, the
TreeComboBox are ready for work… But let's change some its behaviours… For example we want
the tree nodes to be selected by double click intead of one, and don't like that selection hovers the
nodes under mouse. Then just set AcceptOnDblClick property to True (the nodes will be selected
on double click), and set TreeOptions.MouseTrack property to False (mouse will not track the
selection in drop-down view).

To change the selected node at run- or design-time — modify ItemIndex property (this is the
absolute index of selected node).

To change the width and height of the drop-down window — set DropDownCount and
DropDownWidth properties. To let user to enter or modify the text using keyboard — set
ShowEditor property to True.

The EmptyItemText and EmptyItemImageIndex properties can be used to specify the text and
image which should be displayed in the box when no tree node currently selected.

To take some specific actions when the drop-down window appears or disappears — write
OnDropDown, OnAfterDropDown and OnCloseUp event handlers.

Also the tree nodes of TreeComboBox can be exported or imported from another containers of
TTreeNodes object, like standard TreeView control. Check out ExportToTreeNodes and
ImportFromTreeNodes methods for more details.

Installation Instructions 5

© 1999-2003, UtilMind Solutions®

2 Installation Instructions

Package without source code
to Delphi 2
 1. Unzip files from "Delphi2" directory to your "Delphi 2\Lib" directory.
 2. Start Delphi 2 IDE.
 3. Select "Component \ Install..." menu item.
 4. Press "Add" button and select "TreeComboBox.dcu" file.
 5. Rebuild library.

to Delphi 3
 1. Unzip files from "Delphi3" directory and copy them to "Delphi 3\Lib".
 2. Start Delphi 3 IDE.
 3. Open "TreeComboBoxD3.dpk" file.
 4. Install package to the components palette ("Install" button).

to Delphi 4
 1. Unzip files from "Delphi4" directory and copy them to "Delphi 4\Lib".
 2. Start Delphi 4 IDE.
 3. Open "TreeComboBoxD4.dpk" file.
 4. Install package to the components palette ("Install" button).

to Delphi 5
 1. Unzip files from "Delphi5" directory and copy them to "Delphi 5\Lib".
 2. Start Delphi 5 IDE.
 3. Open "TreeComboBoxD5.dpk" file.
 4. Install package to the components palette ("Install" button).

to Delphi 6
 1. Unzip files from "Delphi6" directory and copy them to "Delphi 6\Lib".
 2. Start Delphi 6 IDE.
 3. Open "TreeComboBoxD6.dpk" file.
 4. Install package to the components palette ("Install" button).

to Delphi 7
 1. Unzip files from "Delphi7" directory and copy them to "Delphi 7\Lib".
 2. Start Delphi 7 IDE.
 3. Open "TreeComboBoxD7.dpk" file.
 4. Install package to the components palette ("Install" button).

to C++ Builder 1
 1. Unzip files from "BCB1" directory to your "CBuilder\Lib" directory.
 2. Start C++ Builder IDE.
 3. Select "Component \ Install..." menu item.
 4. Press "Add" button and select "TreeComboBox.dcu" file.
 5. Rebuild library.

to C++ Builder 3
 1. Unzip files from "BCB3" directory and copy them to "CBuilder3\Lib".
 2. Start C++ Builder 3 IDE.
 3. Open "TreeComboBoxCB3.bpk" file.
 6. Select "Project \ Make TreeComboBoxCB3" menu item.
 7. Select "Component \ InstallPackages" menu item.
 8. Press "Add" button and select "TreeComboBoxCB3.bpl" file.

TreeComboBox component6

© 1999-2003, UtilMind Solutions®

to C++ Builder 4
 1. Unzip files from "BCB4" directory and copy them to "CBuilder4\Lib".
 2. Start C++ Builder 4 IDE.
 3. Open "TreeComboBoxCB4.bpk" file.
 4. Install package to the components palette ("Install" button).

to C++ Builder 5
 1. Unzip files from "BCB5" directory and copy them to "CBuilder5\Lib".
 2. Start C++ Builder 5 IDE.
 3. Open "TreeComboBoxCB5.bpk" file.
 4. Install package to the components palette ("Install" button).

to C++ Builder 6
 1. Unzip files from "BCB6" directory and copy them to "CBuilder6\Lib".
 2. Start C++ Builder 6 IDE.
 3. Open "TreeComboBoxCB6.bpk" file.
 4. Install package to the components palette ("Install" button).

Source code
 1. Uninstall / delete all previous (trial) instances of TreeComboBox.
 2. Unzip files from "Sources" directory and copy them to "..\Lib" directory.
 3. Run Delphi or ++ Builder IDE.
 4. Select "Component \ Install..." menu item.
 5. Press "Add" button and select "TreeComboBox.pas" file.
 6. Rebuild library.

3 Registration Information

TreeComboBox component is SHAREWARE. This means that you can try it out for free, but if you like
it and want to use it you have to register it with the author. Before continue read and accept
license agreement please.

The only difference between the unregistered and registered versions is that the registered one has
not message box with remind to register and works without Delphi (C++ Builder) running. You can
also purchase the source code, if you would like to have it, and be able to compile or modify the
TreeComboBox on any 32-bit version of Delphi or C++ Builder.

If you would like to use the TreeComboBox and receive full, unrestricted version, priority support or
even source code — you have to purchase proper license.

All prices in US dollars. Registering entitles you to unlimited support via E-Mail, minor version updates
indefinitely and major version updates for 6 month from date of purchase.

Registration types:

Full, unrestricted version without source code:
Single user license:

· https://secure.element5.com/register.html?productid=185912 - $19,95
Site license:

· https://secure.element5.com/register.html?productid=185914 - $69,95

Full version including 100% Source Code:
Single user license:

Registration Information 7

© 1999-2003, UtilMind Solutions®

· https://secure.element5.com/register.html?productid=185915 - $29,95
Site license:

· https://secure.element5.com/register.html?productid=185916 - $99,95

Comments
1. Site license covers a single organisation in one location (building complex). If you buy a site

license, you may use the software in unlimited number of your company's computers withing this
area. Site license is very cost-effective if you have many computers (many software developers).

See license agreement for more details.

4 License Agreement

Copyright
The TreeComboBox component (software) is Copyright © 1999-2003, by Utilmind Solutions®
(Utilmind). All rights reserved.
The authors - Utilmind Solutions® and Aleksey Kuznetsov (founder of Utilmind), exclusively own all
copyrights to the Advanced Application Controls (AppControls) and all other products distributed by
Utilmind Solutions®.

Liability disclaimer
THIS SOFTWARE IS DISTRIBUTED "AS IS" AND WITHOUT WARRANTIES AS TO
PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER
EXPRESSED OR IMPLIED. YOU USE IT AT YOUR OWN RISK. THE AUTHOR WILL NOT BE
LIABLE FOR DATA LOSS, DAMAGES, LOSS OF PROFITS OR ANY OTHER KIND OF LOSS
WHILE USING OR MISUSING THIS SOFTWARE.

Restrictions
You may not attempt to reverse compile, modify, translate or disassemble the software in whole or in
part. You may not remove or modify any copyright notice or the method by which it may be invoked.

Operating license
Unregistered version
You may distribute the unregistered version of software freely, provided that all files are included and
remain unmodified and that no extra files have been added to the package. You may not ask any
money for the distribution. You may use the unregistered version of software free of charge for
testing purposes, but if you want to use it for other purposes than testing - you have to register it
with the author.

Registered version (single user license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use registered version of the software only by a single person,
on a single computer at a time. You may physically transfer the software from one computer to
another, provided that the software is used only by a single person, on a single computer at a time.
In group projects where multiple persons will use the software, you must purchase an individual
license for each member of the group or purchase site license. Use over a "local area network"
(within the same locale) is permitted provided that the software is used only by a single person, on a
single computer at a time. Use over a "wide area network" (outside the same locale) is strictly
prohibited under any and all circumstances.

TreeComboBox component8

© 1999-2003, UtilMind Solutions®

Registered version (site/team license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team only in one location (building complex). If you purchase
a site license, you may use the program in an unlimited number of your company's computers
within this area.

Registered version (Educational site license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your educational organisation (school/college/university etc) in one location
(building complex). If you buy a educational site license, you may use the program in an unlimited
number of your edicational organisation's computers within this area.

Registered version (World-wide license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team world-wide. If your company has many branches even
with thouthands of computers, world wide license covers them all.

Notes (clarification)
"Single-user license" means "single-developer license". "Site license" means that it can be used by
any number of software developers within your company.
You can use purchased components in ANY number of your projects and deploy the "end-user"
software to ANY number of your users/customers without any additional royalty fees. However you
are not permitted to distribute the component itself (the source code or .dcu files of components).

Back-up and transfer
You may make one copy of the software solely for "back-up" purposes, as prescribed by
international copyright laws. You must reproduce and include the copyright notice on the back-up
copy.

Terms
This license is effective until terminated. You may terminate it by destroying the program, the
documentation and copies thereof. This license will also terminate if you fail to comply with any
terms or conditions of this agreement. You agree upon such termination to destroy all copies of the
program and of the documentation, or return them to author.

Other rights and restrictions
All other rights and restrictions not specifically granted in this license are reserved by authors.

5 Properties

5.1 AcceptOnDblClick

Applies to
tcTreeComboBox component.

Properties 9

© 1999-2003, UtilMind Solutions®

Declaration
property AcceptOnDblClick: Boolean;

Description
The AcceptOnDblClick property controls wether the tree node can be selected by double click or by
single click.

Set AcceptOnDblClick to True, if you think that user should double click the node to select it, or
leave it False if you would like to make it selectable by single mouse click.

See also
TreeOptions property.

5.2 AttachedLabel

Applies to
tcTreeComboBox component.

Unit
acAttachedLabel

Declaration
type
 TacAttachedLabelPosition = (lpAbove, lpBelow, lpLeft, lpRight);
 TacAttachedLabelSpacingKind = (skNearPoint, skFarPoint);
 TacAttachedLabel = class
 property Caption: TCaption;
 property Color: TColor default clBtnFace;
 property Cursor: TCursor default crDefault;
 property Enabled: Boolean;
 property FocusOnClick: Boolean default True;
 property Font: TFont;
 property Hint: String;
 property ParentColor: Boolean default True;
 property ParentFont: Boolean default True;
 property ParentShowHint: Boolean default True;
 property PopupMenu: TPopupMenu;
 property Position: TtcAttachedLabelPosition default lpLeft;
 property ShowAccelChar: Boolean default True;
 property ShowHint: Boolean default False;
 property Spacing: Integer default 4;
 property SpacingKind: TtcAttachedLabelSpacingKind default
skNearPoint;
 property Transparent: Boolean default False;
 property Visible: Boolean;
 property WordWrap: Boolean default False;
 end;

Description
The AttachedLabel structure lets you to operate with the label attached to the some side of control
(at the left or right side, above or below). You can specify the behaviour of label, its position near the
control, and accelerator key for the control (character in caption, after ampersand (&)).

 The label always associated with the control. When user press the accelerator key (Alt +
Character, specified after ampersand (&)), the input focus will be imediately switched to the labeled
control. The input focus also will be moved to the control if user clicks the label with mouse.

TreeComboBox component10

© 1999-2003, UtilMind Solutions®

Screenshot (the labels at the left side is attached to the edit control):

See also
OnLabelClick and OnLabelDblClick events.

5.2.1 Caption

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Caption: TCaption;

Description
The Caption property specified a text string which appers on label attached to control (attached
label).

To underline a character in a Caption that labels a component, include an ampersand (&) before the
character. This type of character is called an accelerator character. The user can then select the
component by pressing Alt while typing the underlined character. To display an ampersand
character in the caption, use two ampersands (&&).

 The label always associated with the control. When user press the accelerator key (Alt +
Character, specified after ampersand (&)), the input focus will be imediately switched to the labeled
control.

Screenshot (the labels at the left side is attached to the edit control):

See also
ShowAccelChar, Color, Font, Transparent, Visible and WordWrap properties.

5.2.2 Color

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Color: TColor;

Description
The Color property specifies the background color for label attached to control. Use Color to read or
change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent
automatically changes the Color property of the control. When the value of the Color property is
changed, the control's ParentColor property is automatically set to False.

Properties 11

© 1999-2003, UtilMind Solutions®

 If you don't want to show background — set Transparent property to True.

See also
ParentColor and Transparent properties.

5.2.3 Cursor

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Cursor: TCursor;

Description
The Cursor property specifies the image used to represent the mouse pointer when it passes into
the region covered by this label attached to control.

Change the value of Cursor to provide feedback to the user when the mouse pointer enters the
control. The value of Cursor is the index of the cursor in the list of cursors maintained by the global
variable, Screen. In addition to the built-in cursors provided by TScreen, applications can add
custom cursors to the list.

5.2.4 Enabled

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Enabled: Boolean;

Description
The Enabled property controls whether the control responds to mouse, keyboard, and timer events.

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to
false. Disabled controls appear dimmed. If Enabled is false, the control ignores mouse, keyboard,
and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use
the control.

See also
Caption and Color properties.

5.2.5 FocusOnClick

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property FocusOnClick: Boolean; // True by default

Description
The FocusOnClick property controls whether the control, associated with the attached label, should
accept focus when user clicks the label with mouse.

Set FocusOnClick to True if you want to switch focus to the control when user clicks the label, or set

TreeComboBox component12

© 1999-2003, UtilMind Solutions®

it to False otherwise.

Note
Additionally you can use OnLabelClick and OnLabelDblClick events of the control.

5.2.6 Font

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Font: TFont;

Description
The Font property controls the attributes of text written on the attached label of control.

To change to a new font, specify a new TFont object. To modify a font, change the value of the
Charset, Color, Height, Name, Pitch, Size, or Style of the TFont object.

See also
ParentFont property.

5.2.7 Hint

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Hint: String;

Description
The Hint property contains the text string that can appear when the user moves the mouse over the
label attached control.

See also
ShowHint and ParentShowHint properties.

5.2.8 ParentColor

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property ParentColor: Boolean;

Description
The ParentColor determines where an attached label looks for its color information.

To have a control use the same color as its parent control, set ParentColor to true If ParentColor is
false the control uses its own Color property.

Set ParentColor to true for all controls in order to ensure that all the controls on a form have a
uniform appearance. For example, if ParentColor is true for all controls in a form, changing the
background color of the form to gray causes all the controls on the form to also have a gray
background.

Properties 13

© 1999-2003, UtilMind Solutions®

When the value of a control's Color property changes, ParentColor becomes false automatically.

See also
Color and Transparent properties.

5.2.9 ParentFont

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property ParentFont: Boolean;

Description
The ParentFont property determines where a control looks for its font information.

To have a control use the same font as its parent control, set ParentFont to true If ParentFont is
false the control uses its own Font property.

Set ParentFont to true for all controls in order to ensure that all the controls on a form have a
uniform appearance. For example, if ParentFont is true for all controls in a form, changing the form's
Font property to 12-point Courier causes all controls on the form to use that font.

When the value of a control's Font property changes, ParentFont becomes false automatically.

When ParentFont is true for a form, the form uses the default font.

See also
Font property.

5.2.10 ParentShowHint

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property ParentShowHint: Boolean;

Description
The ParentShowHint property determines where an attached label looks to find out if its Help Hint
should be shown.

Use ParentShowHint to ensure that all the controls on a form either uniformly show their Help Hints
or uniformly do not show them.

If ParentShowHint is true, the control uses the ShowHint property value of its parent. If
ParentShowHint is false, the control uses the value of its own ShowHint property.

To provide Help Hints for only selected controls on a form, set the ShowHint property for those
controls that should have Help Hints to true, and ParentShowHint becomes false automatically.

Note
Enable or disable all Help Hints for the entire application using the ShowHint property of the
application object.

See also
ShowHint and Hint properties.

TreeComboBox component14

© 1999-2003, UtilMind Solutions®

5.2.11 PopupMenu

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property PopupMenu: TPopupMenu;

Description
The PopupMenu property Identifies the pop-up menu associated with the label attached to control.

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the label and
clicks the right mouse button. If the TPopupMenu's AutoPopup property is True, the pop-up menu
appears automatically. If the menu's AutoPopup property is False, display the menu with a call to its
Popup method from the control's OnContextPopup event handler.

5.2.12 Position

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
type
 TacAttachedLabelPosition = (lpAbove, lpBelow, lpLeft, lpRight);

property Position: TacAttachedLabelPosition;

Description
The Position property of the attached label specifies the layout of the label near the control.

You can make the label visible above, below, at the left or the right side of control.

See also
Spacing and SpacingKind properties.

5.2.13 ShowAccelChar

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property ShowAccelChar: Boolean;

Description
The ShowAccelChar property determines how an ampersand in the label text is displayed.

Set ShowAccelChar to True to allow the label to display an underlined accelerator key value. When
ShowAccelChar is True, any character preceded by an ampersand (&) appears underlined. If the
FocusControl property is set, the windowed control specified by the FocusControl property receives
input focus when the user types that underlined character. To display an ampersand when
ShowAccelChar is True, use two ampersands (&&) to stand for the single ampersand that is
displayed.

Set ShowAccelChar to False to display the label text with all ampersands appearing as
ampersands.

Properties 15

© 1999-2003, UtilMind Solutions®

Example
This example uses two labels on a form. The first label has a caption with an accelerator character in
it. The second label also includes an ampersand, but it does not appear as an accelerator
character.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Label1.ShowAccelChar := True;
 Label1.Caption := 'An &Underlined character appears here';
 Label2.ShowAccelChar := False;
 Label2.Caption := 'An ampersand (&) appears here';
end;

See also
Caption property.

5.2.14 ShowHint

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property ShowHint: Boolean;

Description
The ShowHint property determines whether the label attached to control displays a Help Hint when
the mouse pointer rests momentarily on the label.

The Help Hint is the value of the Hint property, which is displayed in a box just beneath the control.
Use ShowHint to determine whether a Help Hint appears for the control.

To enable Help Hint for a particular control, the application ShowHint property must be true and
either the control's own ShowHint property must be true, or the control's ParentShowHint property
must be true and its parent's ShowHint property must be true.

For example, imagine a check box within a group box. If the ShowHint property of the group box is
true and the ParentShowHint property of the check box is true, but the ShowHint property of the
check box is false, the check box still displays its Help Hint.

Changing the ShowHint value automatically sets the ParentShowHint property to false.

See also
Hint property.

5.2.15 Spacing

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Spacing: Integer;

Description
The Spacing property determines the space (in pixels) between the control and attached label.

There is two spacing kinds which have an influence on distance between the control and label (see

TreeComboBox component16

© 1999-2003, UtilMind Solutions®

SpacingKind property).

When SpacingKind is skNearPoint, the Spacing property signifies the distance between control
and nearest point of attached label.

When SpacingKind is skFarPoint, the Spacing property signigies the distance between control
and far point of label.

Screenshot

See also
SpacingKind and Position properties.

5.2.16 SpacingKind

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
type
 TacAttachedLabelSpacingKind = (skNearPoint, skFarPoint);

property SpacingKind: TtcAttachedLabelSpacingKind;

Description
The SpacingKind property specifies how to measure the spacing between the control and attached
label.

There is two possible values for SpacingKind property:
Value Meaning
 skNearPoint the Spacing property signifies the distance between control and nearest point of

attached label;
 skFarPoint the Spacing property signigies the distance between control and far point of

label.

Screenshot

See also
Spacing and Position properties.

5.2.17 Transparent

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Transparent: Boolean;

Properties 17

© 1999-2003, UtilMind Solutions®

Description
The Transparent property specifies whether controls that sit below the label on a form can be seen
through the label.

Set Transparent to True to prevent the label from obscuring other controls on the form. For example,
if the label is used to add text to a graphic, set Transparent to True so that the label does not stand
out as a separate object.

Writing text so that the background is transparent is slower than writing text when Transparent is
False. If the label is not obscuring a complicated image, performance can be improved by setting
the background color of the label to match the object beneath it and setting Transparent to False.

See also
Color property.

5.2.18 Visible

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property Visible: Boolean;

Description
The Visible property determines whether the label attached to the control appears on screen.

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control
appears. If Visible is false, the control is not visible.

5.2.19 WordWrap

Applies to
tcTreeComboBox component as subproperty of AttachedLabel structure.

Declaration
property WordWrap: Boolean;

Description
The WordWrap property specifies whether the label text wraps when it is too long for the width of
the label.

Set WordWrap to True to allow the label to display multiple line of text. When WordWrap is True,
text that is too wide for the label control wraps at the right margin and continues in additional lines.

Set WordWrap to False to limit the label to a single line. When WordWrap is False, text that is too
wide for the label appears truncated.

See also
Caption property.

5.3 AutoComplete

Applies to
acTreeComboBox component.

Declaration

TreeComboBox component18

© 1999-2003, UtilMind Solutions®

property AutoComplete: Boolean;

Description
The AutoComplete property specifies whether the combo box automatically completes words that
user typed by selecting the first item that begins with the currently typed string.

When AutoComplete is True, the combo box responds to user keystrokes by searching the Items
property array for the first item that matches the string entered so far. If it finds an item that begins
with the prefix typed so far, the combo box selects that item, "completing" the user's typing. If the
user continues to type, selection may move to another, later, item, as the currently typed prefix no
longer matches the initial AutoComplete selection. If the user types a string that is not the prefix of a
string in the combo box, the string is taken as a unique entry and none of the items in the list are
selected.

When AutoComplete is False, this feature is disabled. Strings that the user types are taken literally,
with no attempt to match them to a string in the combo box. Setting AutoComplete to False is
necessary if you want to allow the user to enter a value that is not in the Items list but that is a prefix
on one of the items.

See also
AutoCompleteDelay, AutoCompleteIgnoreCase, Items, ShowEditor and SelectedNode properties.

5.4 AutoCompleteDelay

Applies to
acTreeComboBox component.

Declaration
property AutoCompleteDelay: Integer; // 100 milliseconds by default

Description
The AutoCompleteDelay property speicifes the delay, in milliseconds, which should pass between
keypress and attempt to auto-complete the input.

By default AutoCompleteDelay = 100 milliseconds, that means that when user typed the character
and delayed 1/10 of second before typing the next character, the combo box will try to auto-
complete the input searching the item with the text which begins with the currently typed string.

See also
AutoComplete, AutoCompleteIgnoreCase, Items, ShowEditor and SelectedNode properties.

5.5 AutoCompleteIgnoreCase

Applies to
tcTreeComboBox component.

Declaration
property AutoCompleteIgnoreCase: Boolean; // True by default

Description
The AutoCompleteIgnoreCase property specifies whether the case of typed characters does not
matter, and whether you would like to auto-complete the input disregarding the case of characters.

For example, the drop-down list contains the line "Apple". If the AutoCompleteIgnoreCase is True
and user type the "a", the compobox will try to put missing part of line "pple", disregarding of the

Properties 19

© 1999-2003, UtilMind Solutions®

charcase of the line in the history list. In case if the AutoComplet IgnoreCase is False, the combo
box will try to find the line with exactly same case of characters.

See also
AutoComplete, AutoCompleteDelay, Items, ShowEditor and SelectedNode properties.

5.6 Button

Applies to
tcTreeComboBox component.

Declaration
type
 TacEditButton = class(TPersistent)
 published
 property Cursor: TCursor;
 property Flat: Boolean; // in Delphi 3 and later !!!
 property Glyph: TBitmap;
 property NumGlyphs: TNumGlyphs; // 1..4
 property Hint: String;
 property Width: Word;
 property Visible: Boolean; // False by default
 end;

Description
The tcTreeComboBox is able to have a custom button at the right edge of edit control. The Button
structure intended for specify settings for this button. To make button visible on edit control — set
Button.Visible to True.

You can specify the glyph image and number of images, hint, cursor and width for button.

 The button which at the right of edit control is just usual TSpeedButton component. You can even
gain direct access to all button's properties using hidden EditButton property.
For example, to specify caption for this button you may use following code:
 acTreeComboBox1.EditButton.Caption := 'Test';

See also
OnButtonClick event.

5.6.1 Cursor

Applies to
tcTreeComboBox component as subproperty of Button structure.

Declaration
property Cursor: TCursor;

Description
The Cursor property specifies the image for mouse pointer when it passes over the custom button at
the right side of edit control.

See also
CursorBorder property.

TreeComboBox component20

© 1999-2003, UtilMind Solutions®

5.6.2 Flat

Applies to
tcTreeComboBox component as subproperty of Button structure.

Declaration
property Flat: Boolean;

Description
The Flat property determines whether the button has a 3D border that provides a raised or lowered
look.

Set Flat to True to remove the raised border when the button is unselected and the lowered border
when the button is clicked or selected. When Flat is True, use separate bitmaps for the different
button states to provide visual feedback to the user about the button state.

Remarks
This property available in Delphi 3 and later.

5.6.3 Glyph

Applies to
tcTreeComboBox component as subproperty of Button structure.

Declaration
property Glyph: TBitmap;

Description
The Glyph property specifies the bitmap that appears on the custom button at the right side of edit
control.

Set Glyph to a bitmap object that contains the image that should appear on the face of the button.
Bring up the Open dialog box from the Object Inspector to choose a bitmap file (with a .BMP
extension), or specify a bitmap file at runtime.

Glyph can provide up to four images within a single bitmap. All images must be the same size and
next to each other in a horizontal row. Button displays one of these images depending on the state
of the button.

Image position Buttons state Description

 First Up This image appears when the button is unselected. If no other
images exist in the bitmap, this image is used for all states.

 Second Disabled This image usually appears dimmed to indicate that the button

can't be selected.

 Third Clicked This image appears when the button is clicked. The Up image
reappears when the user releases the mouse button.

 Fourth Down This image appears when the button stays down indicating that
it remains selected.

If only one image is present, Button attempts to represent the other states by altering the image
slightly for each state, although the Down state is always the same as the Up state.

If the bitmap contains multiple images, specify the number of images in the bitmap with the
NumGlyphs property.

Properties 21

© 1999-2003, UtilMind Solutions®

Note
The lower left hand pixel of the bitmap is reserved for the "transparent" color. Any pixel in the bitmap
which matches that lower left hand pixel will be transparent.

See also
NumGlyphs property.

5.6.4 NumGlyphs

Applies to
tcTreeComboBox component as subproperty of Button structure.

Declaration
property NumGlyphs: TNumGlyphs; // 1..4

Description
The NumGlyphs is the number of images specified in the Glyph property.

Set NumGlyphs to the number of images provided by the bitmap assigned to the Glyph property. All
images must be the same size and next to each other in a row. The Glyph property can provide up
to four images.

See also
Glyph property.

5.6.5 Hint

Applies to
tcTreeComboBox component as subproperty of Button structure.

Declaration
property Hint: String;

Description
The Hint property contains the text string that can appear when the user moves the mouse pointer
over the button at right side of edit control.

5.6.6 Kind

Applies to
tcTreeComboBox component as subproperty of Button structure.

Declaration
type
 TacEditButtonKind = (bkCustom, bkEllipsis, bkDropDown, bkFileOpen,
bkFileSave, bkBrowse, bkCalc);

property Kind: TacEditButtonKind;

Description
The Kind property determines the kind of bitmap button.

You can use custom image (Kind = bkCustom) and specify your sign to Glyph property, or use one

of following images (), just switching the Kind property.

See also

TreeComboBox component22

© 1999-2003, UtilMind Solutions®

Glyph and NumGlyphs properties.

5.6.7 Width

Applies to
tcTreeComboBox component as subproperty of Button structure.

Declaration
property Width: Integer;

Description
The Width property controls the horizontal size of the button in pixels.

 The button's height controlled by height of tcTreeComboBox control.

5.6.8 Visible

Applies to
tcTreeComboBox component as subproperty of Button structure.

Declaration
property Visible: Boolean;

Description
The Visible property determines whether the button appears at the right side of tcTreeComboBox
control.

Use the Visible property to control the visibility of the button at runtime. If Visible is True, the button
appears. If Visible is False, the button is not visible.

5.7 ColorDisabled

Applies to
tcTreeComboBox component.

Declaration
property ColorDisabled: TColor; // clBtnFace by default

Description
The ColorDisabled property for tcTreeComboBox component is the background color of the edit
control at disabled state (when Enabled is False). Use the ColorDisabled property to specify color for
disabled edit control.

See also
Color property.

5.8 CursorBorder

Applies to
tcTreeComboBox component.

Declaration
property CursorBorder: TCursor;

Description
The CursorBorder property specifies the image used to represent the mouse pointer when it passes

Properties 23

© 1999-2003, UtilMind Solutions®

over the non-client area of edit control.

5.9 DropDownCount

Applies to
tcTreeComboBox component.

Declaration
property DropDownCount: Integer;

Description
The DropDownCount property specifies the number of items (tree nodes) which can be visible in the
drop down window simultaneously. You can increase this value if you wish to let user to see more
tree nodes when the list is dropped down.

See also
DropDownWidth property.

5.10 DropDownWidth

Applies to
tcTreeComboBox component.

Declaration
property DropDownWidth: Integer;

Description
The DropDownWidth controls the width of the drop down window, when can be visible when user
clicks on the TreeComboBox control or its button at the right side.

By default the width of drop down window is the same as the width of control (when the
DropDownWidth equal to Width and you resize the control at design time, you will see that
DropDownWidth will be changed accordingly to Width of control). But of course, you can modify this
value, if you wish to make the width of popup window different than width of contol.

See also
DropDownCount property.

5.11 EmptyItemImageIndex

Applies to
tcTreeComboBox component.

Declaration
property EmptyItemImageIndex: Integer;

Description
The EmptyItemImageIndex property used to specify the index of image from image list. The image
which you selected will appear in the combo box if no tree node is selected.

See also
EmptyItemText and Images properties.

TreeComboBox component24

© 1999-2003, UtilMind Solutions®

5.12 EmptyItemText

Applies to
tcTreeComboBox component.

Declaration
property EmptyItemText: String;

Description
The EmptyItemText property used to specify the text which appears in the combo box if no tree
node is selected (for example, you can specify "Please select something" text to this property if you
don't want to show the blank box).

See also
EmptyItemImageIndex property.

5.13 Images

Applies to
tcTreeComboBox component.

Declaration
property Images: TImageList;

Description
The Images property determines which image list is associated with the TreeView embedded to the
drop-down window of tcTreeComboBox.

Use Images to provide a customized list of bitmaps that can be displayed to the left of a node's
label. Individual nodes specify the image from this list that should appear by setting their
ImageIndex property (use Items property to specify the ImageIndex'es of the tree nodes at design-
time).

See also
StateImages properties.

5.14 ItemIndex

Applies to
tcTreeComboBox component.

Declaration
property ItemIndex: Integer;

Description
The ItemIndex property determines the absolute index of selected node. You can read and specify
this value both at run- and design-time to select the node.

See also
SelectedNode property;
OnCanSelectNode event.

Properties 25

© 1999-2003, UtilMind Solutions®

5.15 Items

Applies to
tcTreeComboBox component.

Declaration
property Items: TTreeNodes;

Description
The Items property lists the individual nodes that appear in the TreeView control, embedded to the
drop-down window of tcTreeComboBox.

Individual nodes in a tree view are TTreeNode objects. These individual nodes can be accessed by
using the Items property along with the item's index into the tree view. For example, to access the
second item in the tree view, you could use the following code.

MyTreeNode := tcTreeComboBox1.Items[1];

When setting this property at design-time in the Object Inspector the TreeView Items Editor
appears. Use the New Item and New SubItem buttons to add items to the tree view. Use the Text
property to modify what text is displayed in the label of the item.

At run-time nodes can be added and inserted by using the TTreeNodes methods AddChildFirst,
AddChild, AddChildObjectFirst, AddChildObject, AddFirst, Add, AddObjectFirst, AddObject and
Insert.

Notes
Accessing tree view items by index can be time-intensive, particularly when the tree view contains
many items. For optimal performance, try to design your application so that it has as few
dependencies on the tree view's item index as possible;

 Alternatively you can access the tree nodes at run-time through TreeView property.

See also
TreeView, TreeOptions and SelectedNode properties.

5.16 SelectedNode

Applies to
tcTreeComboBox component.

Declaration
property SelectedNode: TTreeNode; // read-only!!

Description
The SelectedNode is the read-only property which returns the pointer to TTreeNode object, which
currently selected in the TreeView control embedded to drop-down window.

 Alternatively you can determinate and specify the selected tree node by its absolute index using
ItemIndex property.

See also
ItemIndex property;
OnCanSelectNode event.

TreeComboBox component26

© 1999-2003, UtilMind Solutions®

5.17 ShowEditor

Applies to
tcTreeComboBox component.

Declaration
property ShowEditor: Boolean;

Description
The ShowEditor property controls whether user should be able to enter of modify the text in the
combo-box using keyboard.

Set ShowEditor to True if you would like to let user to modify the text with keyboard, otherwise, if
user must select the tree node from drop-down list, set ShowEditor to False.

See also
SelectedNode and TreeOptions properties.

5.18 ShowTreePathInEdit

Applies to
tcTreeComboBox component.

Declaration
property ShowTreePathInEdit: Boolean;

Description
The ShowTreePathInEdit property determines whether the "edit box" should display the full path of
the node.

For example, we have the following structure:
Test
 Test 1
 Test 2
 Test 1 (selected)
 Test 2
 Test 3

Then, in case if ShowTreePathInEdit = True, we will have "Test\Test 2\Test 1" shown in the edit box
of the combobox.

Note

 This property will take effect only in case if ShowEditor property is False. You can't display the
path when the combobox is editable.

See also
TreePathSeparator and ShowEditor properties.

5.19 StateImages

Applies to
tcTreeComboBox component.

Declaration
property StateImages: TImageList;

Properties 27

© 1999-2003, UtilMind Solutions®

Description
The StateImages property determines which image list to use for state images.

Use StateImages to provide a set of bitmaps that reflect the state of tree view nodes. The state
image appears as an additional image to the left of the item's icon.

See also
Images, TreeOptions and TreeView properties.

5.20 TreeOptions

Applies to
tcTreeComboBox component.

Declaration
type
 TacTreeViewOptions = class
 published
 property AutoExpand: Boolean default False;
 property FullExpand: Boolean default False;
 property MouseTrack: Boolean default True;
 property RowSelect: Boolean default False;
 property ShowButtons: Boolean default True;
 property ShowLines: Boolean default True;
 property ShowRoot: Boolean default True;
 property Tooltips: Boolean default True;
 end;

property TreeOptions: TacTreeViewOptions;

Description
The TreeOptions structure used to specify some behaviours of the TreeView embedded to drop-
down window of tcTreeComboBox control.

There are possible properties of embedded TreeView control:

 Property Purpose

 AutoExpand Specifies whether the nodes in the tree view automatically expand and

collapse depending on the selection;

 FullExpand Specifies whether the TreeComboBox should automatically expand all the

nodes and their sub-nodes upon DropDown (alternativaly you can just
expand nodes in OnDropDown event handler);

 MouseTrack Specifies whether the selection should always hovers the tree node under

mouse pointer, even when user move mouse over tree view without clicking;

 RowSelect Specifies whether the entire row of the selected item is highlighted;

 ShowButtons Specifies whether to display plus (+) and minus (-) buttons to the left side of

each parent item;

 ShowLines Specifies whether to display the lines that link child nodes to their

corresponding parent nodes;

 ShowRoot Specifies whether lines connecting top-level nodes are displayed;

 Tooltips Specifies whether the items in the tree view have tooltips.

TreeComboBox component28

© 1999-2003, UtilMind Solutions®

See also
AcceptOnDblClick, ShowEditor, SelectedNode and TreeView properties.

5.21 TreePathSeparator

Applies to
tcTreeComboBox component.

Declaration
property TreePathSeparator: Char; // '\' by default

Description
The TreePathSeparator specifies the separator character for the node path, in case if
ShowTreePathInEdit = True.

See also
ShowTreePathInEdit and ShowEditor properties.

5.22 TreeView

Applies to
tcTreeComboBox component.

Declaration
property TreeView: TacPopupTreeView; // run-time and read-only!

Description
The TreeView is the read-only property which can be used at run-time to access the properties and
methods of the TreeView control embedded to the drop-down window of tcTreeComboBox.

 Alternatively you can just specify some behaviours of TreeView using TreeOptions property.

Example
procedure TForm1.tcTreeComboBox1DropDown(Sender: TObject);
begin
 tcTreeComboBox1.TreeView.FullExpand;
end;

See also
TreeOptions and SelectedNode properties;
ExportToTreeNodes, ImportFromTreeNodes and ImportFromTreeView methods;
OnDropDown, OnAfterDropDown and OnCloseUp events.

6 Methods

6.1 AddPath

Applies to
tcTreeComboBox component.

Declaration
function AddPath(Node: TTreeNode; const Path: String; const
PathSeparator: String = '\'): TTreeNode;

Methods 29

© 1999-2003, UtilMind Solutions®

Description
The AddPath method adds or inserts to the TreeView the string or nested group of strings (pathes)
specified by Path parameter and separated by string specifed in PathSeparator parameter.

The declaration can be
AddPath(nil, 'D:\Test\Test');

So, if you call method above, the component will add following structure to the root item of
TreeComboBox:
D:
Test
Test

Return value is the last added child node.

See also
ShowTreePathInEdit, TreePathSeparator and TreeView properties.

6.2 ExportToTreeNodes

Applies to
tcTreeComboBox component.

Declaration
procedure ExportToTreeNodes(TargetTreeNodes: TTreeNodes;
 SourceRootNode: TTreeNode = nil; TargetRootNode: TTreeNode = nil);

Description
The ExportToTreeNodes method used to copy the tree nodes from current TreeCombBox to another
container TTreeNodes object (i.e: standard TreeView or another TreeComboBox).

Example (demonstrates how to fill the TreeView with nodes from TreeComboBox)
tcTreeComboBox1.ExportToTreeNodes(acTreeView1.Items);

See also
ImportFromTreeNodes and ImportFromTreeView methods.

6.3 FindAbsoluteIndexByNode

Applies to
tcTreeComboBox component.

Declaration
function FindAbsoluteIndexByNode(Node: TTreeNode): Integer;

Description
The FindAbsoluteIndexByNode method retreives the absolute index from node specified in the
Node parameter.

See also
FindNode and FindAbsoluteIndexByNode methods.

TreeComboBox component30

© 1999-2003, UtilMind Solutions®

6.4 FindNode

Applies to
tcTreeComboBox component.

Declaration
function FindNode(const Text: String; IgnoreCase: Boolean = False;
 WholeText: Boolean = True): TTreeNode;

Description
The FindNode method search the tree node with the text specified in Text parameter.

The IgnoreCase parameter specified whether the search should be case sensitive.

The WholeText parameter specified whether it should find the node where the length of caption is
the same as length of Text parameter (if WholeText is False, the method will try to find the node
which caption begins with the text specified in Text parameter).

Function returns the pointer to tree node if it successfully found, or NIL (NULL) otherwise (if the
node with specified Text not exists in the tree view).

See also
FindNodeByAbsoluteIndex and FindAbsoluteIndexByNode methods.

6.5 FindNodeByAbsoluteIndex

Applies to
tcTreeComboBox components.

Declaration
function FindNodeByAbsoluteIndex(AbsoluteIndex: Integer): TTreeNode;

Description
The FindNodeByAbsoluteIndex method search the tree node with absolute index equal to the value
specified in the AbsoluteIndex parameter.

Function returns the pointer to tree node if it successfully found, or NIL (NULL) otherwise (if the
node with specified absolute index not exists in the tree view).

See also
FindNode and FindAbsoluteIndexByNode methods.

6.6 ImportFromTreeNodes

Applies to
tcTreeComboBox component.

Declaration
procedure ImportFromTreeNodes(SourceTreeNodes: TTreeNodes;
 SourceRootNode: TTreeNode = nil; TargetRootNode: TTreeNode = nil);

Description
The ImportFromTreeNodes method used to copy the tree nodes from some container TTreeNodes
object (i.e: standard TreeView or another TreeComboBox) to this TreeComboBox control.

Methods 31

© 1999-2003, UtilMind Solutions®

Example (demonstrates how to fill the tcTreeComboBox control with nodes from some TreeView)
tcTreeComboBox1.ImportFromTreeNodes(acTreeView1.Items);

See also
ExportToTreeNodes and ImportFromTreeView methods.

6.7 ImportFromTreeView

Applies to
tcTreeComboBox component.

Declaration
procedure ImportFromTreeView(SourceTreeView: TCustomTreeView;
 SourceRootNode: TTreeNode = nil; TargetRootNode: TTreeNode = nil);

Description
The ImportFromTreeView method used to copy the tree nodes from some TreeView control to this
TreeComboBox control.

Example (demonstrates how to fill the tcTreeComboBox control with nodes from some TreeView)
tcTreeComboBox1.ImportFromTreeView(acTreeView1);

See also
ExportToTreeNodes and ImportFromTreeNodes methods.

6.8 SelectNodeByText

Applies to
tcTreeComboBox component.

Declaration
function SelectNodeByText(const Text: String; IgnoreCase: Boolean =
False): TTreeNode;

Description
The SelectNodeByText method looking for the node in drop-down list, with the same text as
specified in Text property. If it successfully found the node with specified text, it selects it.

The IgnoreCase parameter specified whether the search should be case sensitive.

Function returns the pointer to selected node if succeed, or NIL (NULL) otherwise.

See also
ShowEditor property.

6.9 SetSelection

Applies to
tcTreeComboBox component.

Declaration
procedure SetSelection(SelStart: Integer = 0; SelEnd: Integer = -1);

Description
The SetSelection method used to select a range of characters in an edit control.

TreeComboBox component32

© 1999-2003, UtilMind Solutions®

SelStart parameter specifies the starting character position of the selection.

SelEnd parameter specifies the ending character position of the selection.

Remarks
If the SelStart parameter is 0 and the SelEnd parameter is -1, all the text in the edit control is
selected. If SelStart is -1, any current selection is removed. The caret is placed at the end of the
selection indicated by the greater of the two values SelEnd and SelStart.

7 Events

7.1 OnAfterDropDown

Applies to
tcTreeComboBox component.

Declaration
property OnAfterDropDown: TNotifyEvent;

Description
The OnAfterDropDown event occurs at once the drop-down window (wich displays the tree nodes)
appears below the combo-box.

 Write this event handler if you need to perform some specific actions at once after the drop-down
window appears on screen. If you need to do something (for example, specify the width of drop-
down window) before it appears on screen — write OnDropDown event handler.

See also
OnDropDown and OnCloseUp events;
DropDownWidth property.

7.2 OnButtonClick

Applies to
tcTreeComboBox component.

Declaration
property OnButtonClick: TNotifyEvent;

Description
The OnButtonClick event occurs when user clicks the custom button at the right side of edit control.

 To make the button appear on edit control — set Button.Visible to True.

See also
Button structure.

7.3 OnButtonLeftMouseDown

Applies to
tcTreeComboBox component.

Declaration
property OnButtonLeftMouseDown: TNotifyEvent;

Events 33

© 1999-2003, UtilMind Solutions®

Description
The OnButtonLeftMouseDown event occurs when user presses the left mouse button over the
button at the right side of edit control.

 To make the button appear on edit control — set Button.Visible to True.

See also
Button structure.

7.4 OnCanSelectNode

Applies to
tcTreeComboBox component.

Declaration
type
 TtcTreeComboBoxCanSelectNodeEvent = procedure(Sender: TObject; Node:
TTreeNode; var AllowSelect: Boolean) of object;

property OnCanSelectNode: TtcTreeComboBoxCanSelectNodeEvent;

Description
The OnCanSelectNode event

See also
SelectedNode and TreeView properties;
OnDropDown, OnAfterDropDown and OnCloseUp events.

7.5 OnCloseUp

Applies to
tcTreeComboBox component.

Declaration
type
 TacDropDownCloseUpEvent = procedure(Sender: TObject; Accept: Boolean)
of object;

property OnCloseUp: TacDropDownCloseUpEvent;

Description
The OnCloseUp event occurs when the drop-down window is about to disappear from screen.

The Accept parameter indicates whether the tree node has been selected by user or the drop-down
window has been closed without selection (i.e: user has clicked somewhere else and moved the
input focus to another control). When Accept is True, user has selected the node, otherwise — just
canceled the drop-down window.

See also
OnDropDown, OnAfterDropDown and OnCanSelectNode events.

7.6 OnDropDown

Applies to
tcTreeComboBox component.

TreeComboBox component34

© 1999-2003, UtilMind Solutions®

Declaration
property OnDropDown: TNotifyEvent;

Description
The OnDropDown event occurs when the user clicks the combo box (or its button at the right side),
and the drop-down window with tree nodes is about to appear on screen.

Write the OnDropDown event handler to perform some specific actions (for example, resize the
drop-down window) before the tree nodes appears on screen.

 If you need to take some actions when the drop-down window already on screen — write
OnAfterDropDown event handler.

Example (demonstrates how to change the width of drop-down window in OnDropDown event
handler)
procedure TForm1.tcTreeComboBox1DropDown(Sender: TObject);
begin
 tcTreeComboBox1.DropDownWidth := Random(200) + 20;
 // also you can expand some nodes of embedded TreeView
 tcTreeComboBox1.TreeView.FullExpand;
end;

See also
OnAfterDropDown and OnCloseUp events;
DropDownWidth, TreeOptions and TreeView properties.

7.7 OnLabelClick

Applies to
tcTreeComboBox component.

Declaration
property OnLabelClick: TNotifyEvent;

Description
The OnLabelClick event occurs when user clicks the label attached to the control with a mouse.

 To make the label appear near the edit control — set AttachedLabel.Visible to True, or to False if
you'd like to hide the attached label.

See also
AttachedLabel structure.

7.8 OnLabelDblClick

Applies to
tcTreeComboBox component.

Declaration
property OnLabelDblClick: TNotifyEvent;

Description
The OnLabelDblClick event occurs when user double clicks the label attached to the control with a
mouse.

Events 35

© 1999-2003, UtilMind Solutions®

 To make the label appear near the edit control — set AttachedLabel.Visible to True, or to False if
you'd like to hide the attached label.

See also
AttachedLabel structure.

7.9 OnMouseEnter

Applies to
tcTreeComboBox component.

Declaration
property OnMouseEnter: TNotifyEvent;

Description
The OnMouseEnter occurs when mouse pointer hover the edit control.

See also
OnMouseLeave event.

7.10 OnMouseLeave

Applies to
tcTreeComboBox component.

Declaration
property OnMouseLeave: TNotifyEvent;

Description
The OnMouseLeave occurs when mouse pointer leave the edit control.

See also
OnMouseEnter event.

	TreeComboBox - Overview
	Installation Instructions
	Registration Information
	License Agreement
	Properties
	AcceptOnDblClick
	AttachedLabel
	Caption
	Color
	Cursor
	Enabled
	FocusOnClick
	Font
	Hint
	ParentColor
	ParentFont
	ParentShowHint
	PopupMenu
	Position
	ShowAccelChar
	ShowHint
	Spacing
	SpacingKind
	Transparent
	Visible
	WordWrap

	AutoComplete
	AutoCompleteDelay
	AutoCompleteIgnoreCase
	Button
	Cursor
	Flat
	Glyph
	NumGlyphs
	Hint
	Kind
	Width
	Visible

	ColorDisabled
	CursorBorder
	DropDownCount
	DropDownWidth
	EmptyItemImageIndex
	EmptyItemText
	Images
	ItemIndex
	Items
	SelectedNode
	ShowEditor
	ShowTreePathInEdit
	StateImages
	TreeOptions
	TreePathSeparator
	TreeView

	Methods
	AddPath
	ExportToTreeNodes
	FindAbsoluteIndexByNode
	FindNode
	FindNodeByAbsoluteIndex
	ImportFromTreeNodes
	ImportFromTreeView
	SelectNodeByText
	SetSelection

	Events
	OnAfterDropDown
	OnButtonClick
	OnButtonLeftMouseDown
	OnCanSelectNode
	OnCloseUp
	OnDropDown
	OnLabelClick
	OnLabelDblClick
	OnMouseEnter
	OnMouseLeave

