
FileStorage component 1

© 1998-2001, UtilMind Solutions®

1 FileStorage component

1.1 TFileStorage - Overview

Overview
The FileStorage component capable to upload and hold any data files within your Delphi/BCB forms
(within the body of the EXE-program). If your software requires any additional files (.DLL's, WAV's,
.TXT's etc), these files could be uploaded straight onto your form and be extracted from executable
file at run-time (AutoExtract property). Also you can access to stored files directly from memory
without extracting them to disk (see example).

You can use this component if you would like to make high integration of your app with stored files
and get access to them at run-time or, if you would like to supply your customers with just one,
single executable file!.

 To upload files onto the form, or manage already stored files at design-time - invoke the
FileStorage Designer (double click on component or click on Files property).

See also
WavPlayer component.

1.2 Properties

1.2.1 AutoExtract

Applies to
FileStorage component.

Declaration
type
 TAutoExtract = class
 published
 property Enabled: Boolean;
 property ExtractTo: TExtractTo;
 property Overwrite: TFileStorageOverwrite;
 property RemoveOnTerminate: Boolean;
 end;

property AutoExtract: TAutoExtract;

Description
The AutoExtract is the TPersistent property which contains the list of sub-properties.

You may use these auto extracting features if your would like to extract your files on every start of
your application. Make Enabled property True and specify the path where files should be stored. If
you don't want to keep extracted files permanenetly on the hard drive and would like to kill all
extracted files after closing of your program - set RemoveOnTerminate to True.

If you would NOT extract files automatically on program startup, set Enabled property to False and
ignore other auto extracting features. Anyway you may use Extract method at any time.

Note
Since auto extracting features used by FileStorage on program startup only, you don't need to
change anything from AutoExtract subproperties at run-time. You may set these properies at

FileStorage component2

© 1998-2001, UtilMind Solutions®

design-time only, all run-time modifications will senseless.

1.2.1.1 Enabled

Applies to
FileStorage component, as subproperty AutoExtract structure.

Declaration
property Enabled: Boolean;

Description
Controls whether FileStorage component should automatically extract all files on program startup.

If AutoExtract.Enabled is TRUE, FileStorage will automatically extract all files on program startup, to
location specified in ExtractTo property.

If AutoExtract.Enabled is FALSE then FileStorage will NOT extract files on startup and all other
subproperties of the AutoExtract property will ignored.

Note
You don't need to change anything from AutoExtract subproperties at run-time because of these
auto extracting features used by FileStorage on program startup only. You may set this property at
design-time only, all run-time modifications will senseless.

1.2.1.2 ExtractTo

Applies to
FileStorage component, as subproperty AutoExtract structure.

Declaration
type
 TExtractTo = class(TPersistent)
 published
 property CreatePath: Boolean;
 property ToplevelDir: TToplevelDir;
 property Subdirectory: String;
 end;

property ExtractTo: TExtractTo;

Examples of usage
1.If you would like to extract stored files to the Desktop - just make TopLevelDir property

"tdDesktop". Leave SubDirectory string clean.

2.If you would like to extract files to current directory, create subdirectory named, let's say, "plugins"
and exctract files there - set ToplevelDir property as "tdCurrentDir" and assign SubDirectory
property as "plugins" (SubDirectory := 'plugins'). If you would like to create this
subdirectory automatically even if it's does not exists - set CreatePath property to True.

3.If you would like to extract your files to non-system folder (for example, to "h:\databases\my own
database\") then you don't need to use any toplevel directories, just set ToplevelDir property to
"tdNone" and assign to SubDirectory "h:\databases\my own database" path. If you would like to
create this subdirectory automatically even if it's does not exists - set CreatePath property to True.

Note

FileStorage component 3

© 1998-2001, UtilMind Solutions®

You don't need to change anything from AutoExtract subproperties at run-time because of these
auto extracting features used by FileStorage on program startup only. You may set this property at
design-time only, all run-time modifications will senseless.

1.2.1.2.1 CreatePath

Applies to
FileStorage component as subproperty of AutoExtract.ExtractTo.

Declaration
property CreatePath: Boolean;

Description
Controls whether FileStorage should automatically create path for exctractable files.

Examples of usage
1.If you would like to extract stored files to the Desktop - just make TopLevelDir property

"tdDesktop". Leave SubDirectory string clean.

2.If you would like to extract files to current directory, create subdirectory named, let's say, "plugins"
and exctract files there - set ToplevelDir property as "tdCurrentDir" and assign SubDirectory
property as "plugins" (SubDirectory := 'plugins'). If you would like to create this
subdirectory automatically even if it's does not exists - set CreatePath property to True.

3.If you would like to extract your files to non-system folder (for example, to "h:\databases\my own
database\") then you don't need to use any toplevel directories, just set ToplevelDir property to
"tdNone" and assign to SubDirectory "h:\databases\my own database" path. If you would like to
create this subdirectory automatically even if it's does not exists - set CreatePath property to True.

Note
You don't need to change anything from AutoExtract subproperties at run-time because of these
auto extracting features used by FileStorage on program startup only. You may set this property at
design-time only, all run-time modifications will senseless.

1.2.1.2.2 SubDirectory

Applies to
FileStorage component as subproperty of AutoExtract.ExtractTo.

Declaration
property SubDirectory: String;

Description
The value of the Directory property points the directory or subdirectory where will be stored your files
on program startup.

Examples of usage
1.If you would like to extract stored files to the Desktop - just make TopLevelDir property

"tdDesktop". Leave SubDirectory string clean.

2.If you would like to extract files to current directory, create subdirectory named, let's say, "plugins"
and exctract files there - set ToplevelDir property as "tdCurrentDir" and assign SubDirectory
property as "plugins" (SubDirectory := 'plugins'). If you would like to create this
subdirectory automatically even if it's does not exists - set CreatePath property to True.

3.If you would like to extract your files to non-system folder (for example, to "h:\databases\my own

FileStorage component4

© 1998-2001, UtilMind Solutions®

database\") then you don't need to use any toplevel directories, just set ToplevelDir property to
"tdNone" and assign to SubDirectory "h:\databases\my own database" path. If you would like to
create this subdirectory automatically even if it's does not exists - set CreatePath property to True.

Note
You don't need to change anything from AutoExtract subproperties at run-time because of these
auto extracting features used by FileStorage on program startup only. You may set this property at
design-time only, all run-time modifications will senseless.

1.2.1.2.3 TopLevelDir

Applies to
FileStorage component as subproperty of AutoExtract.ExtractTo.

Declaration
type
 TacToplevelDir = (tdCurrentDir, tdWindowsDir,
 tdTempDir, tdSystemDir,
 tdMediaDir, tdCursorsDir,
 tdHelpDir, tdSamplesDir,
 tdDesktop, tdProgramFiles,
 tdMyDocuments, tdMyPictures,
 tdAppData, tdNone);

property ToplevelDir: TToplevelDir;

Description
The ToplevelDir property specifies the directory where you would like to automatically extract files on
program startup.

Examples of usage
1.If you would like to extract stored files to the Desktop - just make ToplevelDir property

"tdDesktop". Leave SubDirectory string clean.

2.If you would like to extract files to current directory, create subdirectory named, let's say, "plugins"
and exctract files there - set ToplevelDir property as "tdCurrentDir" and assign SubDirectory
property as "plugins" (SubDirectory := 'plugins'). If you would like to create this
subdirectory automatically even if it's does not exists - set CreatePath property to True.

3.If you would like to extract your files to non-system folder (for example, to "h:\databases\my own
database\") then you don't need to use any toplevel directories, just set ToplevelDir property to
"tdNone" and assign to SubDirectory "h:\databases\my own database" path. If you would like to
create this subdirectory automatically even if it's does not exists - set CreatePath property to True.

Note
1. You don't need to change anything from AutoExtract subproperties at run-time because of these
auto extracting features used by FileStorage on program startup only. You may set this property at
design-time only, all run-time modifications will senseless.

2. Current directory (tdCurrentDir) is the same as ExtractFilePath(Application.ExeName).

3. If TopLevelDir = tdNone, the file will be extracted to absolute path specified in SubDirectory
property.

FileStorage component 5

© 1998-2001, UtilMind Solutions®

1.2.1.3 Overwrite

Applies to
FileStorage component, as subproperty AutoExtract structure.

Declaration
type
 TacFileStorageOverwrite = (owIfSizeDifferent,
 owNever, owAlways);

property Overwrite: TFileStorageOverwrite;

Description
Controls whether FileStorage could overwrite already extracted files on program startup.

Note
You don't need to change anything from AutoExtract subproperties at run-time because of these
auto extracting features used by FileStorage on program startup only. You may set this property at
design-time only, all run-time modifications will senseless.

1.2.1.4 RemoveOnTerminate

Applies to
FileStorage component, as subproperty AutoExtract structure.

Declaration
property RemoveOnTerminate: Boolean;

Description
If RemoveOnTerminate property is True then all automatically extracted files will be deleted on
program termination. If the target Subdirectory is specified, the FileStorage will also try to delete the
subdirectory, if it is empty.

Remark

 It will remove only files extracted per current application session, and will not delete files that was
exist before extracting. If you wish to be sure that ALL files are stored on start and definitely deleted
on termination — set Overwrite property to owAlways.

See also
Enabled and Overwrite properties; SubDirectory property of ExtractTo structure.

1.2.2 Count

Applies to
FileStorage component.

Declaration
property Count: Integer; // Read only !

Description
The Count is read-only property which holds the number of currently stored files.

FileStorage component6

© 1998-2001, UtilMind Solutions®

1.2.3 DataSize

Applies to
FileStorage component.

Declaration
property DataSize: Integer; // Read only !

Description
The DataSize is read-only property which holds the total size of all currently stored files.

1.2.4 Files

Applies to
FileStorage component.

Declaration
property Files: TStoredFiles; { Successor of TList. Contains the list of

TStoredFile objects }

Description
The Files property is the List which contains all currently stored files. Every item of this list is the file
uploaded onto your form at design-time. All files in this list are TStoredFile objects.

If you would like to access stored file at run-time directly from memory you may use following
example:

var
 StoredFile: TStoredFile;
 DataStream: TMemoryStream;
begin
 StoredFile := FileStorage1.Files[1];
 DataStream := StoredFile.Data; // Data: TMemoryStream

 Another example (demonstrates how to retrieve the content of text file to Memo control):
begin
 TStoredFile(FileStorage1.Files[0]).Data.Position := 1; // Since Data
is the stream we must reset its position
 Memo1.Lines.LoadFromStream(TStoredFile(FileStorage1.Files[0]).Data);
end;

FileStorage component 7

© 1998-2001, UtilMind Solutions®

1.3 Methods

1.3.1 Extract

Applies to
FileStorage component.

Declaration
function Extract(FileName, OutputFile: String): Boolean;

Description
The Extract method is intended to extract stored files from FileStorage component to disk.

FileName parameter specifies the exact (though case sensitive) file name of stored file.
OutputFile parameter specifies the location (directory) and the file name of output file.

Returns True if file has been successfully extracted.

Example
procedure TForm1.ExtractBtnClick(Sender: TObject);
begin
 Extract('MyFile.exe', 'c:\MyFolder\MyFile.exe');
end;

1.4 Events

1.4.1 OnExtract

Applies to
FileStorage component.

Declaration
procedure OnExtract(Sender: TObject; FileName: String; FileSize:

Integer; var AllowExtracting: Boolean);

Description
The OnExtract event occurs when StoredFile is ready to be extracted.

Write an OnExtract event handler to determinate whether this file could be extracted. Set
AllowExtracting parameter to False to pervent file from extracting.

Parameters
FileName file name of the file to extract.
FileSize size (in bytes) of the file to extract.
AllowExtracting determinees whether the file (specified by FileName parameter) could be extracted.

Example
procedure TForm1.FileStorageExtract(Sender: TObject;
 FileName: String; FileSize: Integer;
 var AllowExtracting: Boolean);
begin
 if UpperCase(ExtractFileExt(FileName)) = '.TXT' then
 AllowExtracting := False;
end;

FileStorage component8

© 1998-2001, UtilMind Solutions®

1.4.2 OnExtracted

Applies to
FileStorage component.

Declaration
procedure OnExtracted(Sender: TObject; FileName: String; FileSize:

Integer; Successfully: Boolean);

Description
The OnExtracted event occurs once StoredFile has extracted.

Write an OnExtracted event handler to determinate whether this file has successfully extracted from
FileStorage. If file has been sucessfully extracted (without write errors) then Successfully parameter
will be True.

Parameters
FileName file name of the extracted file.
FileSize size (in bytes) of the extracted file.
Successfully determinees whether the file (specified by FileName parameter) has successfully

extracted.

Example
procedure TForm1.FileStorageExtracted(Sender: TObject;
 FileName: String; FileSize: Integer; Successfully: Boolean);
begin
 if not Successfully then
 ShowMessage('Error !!');
end;

1.5 FileStorage designer

The FileStorage designer will help you to upload and organize your files at design-time.

Screenshoot

Yeah, all these files (>12 MB) currently uploaded on Delphi form!

FileStorage component 9

© 1998-2001, UtilMind Solutions®

1.6 Playing .WAVs (example)

Following code demonstrates how to access stored files at run-time without extracting them to hard
disk. This sample shows how to play stored .WAV file.

Delphi:

uses MMSystem;

procedure TForm1.Button1Click(Sender: TObject);
var
 StoredFile: TStoredFile;
 Data: TMemoryStream;
begin
 StoredFile := FileStorage1.Files[0];
 Data := StoredFile.Data;

 // the stored data could be retrieved from Data.Memory
 sndPlaySound(Data.Memory, SND_MEMORY or SND_ASYNC);
end;

C++ Builder:

#include <mmsystem.h>

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 TStoredFile *StoredFile = (TStoredFile*)acFileStorage1->Files-
>Items[0];
 TMemoryStream *Data = StoredFile->Data;

 // the stored data could be retrieved from Data->Memory
 sndPlaySound((LPCTSTR)Data->Memory, SND_MEMORY|SND_ASYNC);
}

See also
Files property.

2 WavPlayer component

2.1 TWavPlayer - Overview

Overview
The acWavPlayer component could be used for playing the standard or custom Wave-Audio (*.wav)
files.

The type of sound controlled by SoundType property. It could be a custom (stCustom) or standard
sound.

Custom sounds can be stored (uploaded) onto your form in WaveSound property editor at design-
time and does not requires additional file in the supply package of your software. WavPlayer
component stores WAV's onto your form same way as it does the FileStorage component.

FileStorage component10

© 1998-2001, UtilMind Solutions®

Standard sounds is the sounds which associated with some system events (such as Windows Start
or Program Minimize) and playing when any standard system event occurs.

How to use ?
To start playing the sound - call Play method. To terminate playing - call Stop method.

 To upload a custom wave-audio file onto form - click on WaveSound property or click right mouse
button on the component image and select "Upload WAV sound..." menu item.

 To test the sound - double click on the component image.

See also
Other components which stores (uploads) files onto Delphi/BCB form at design-time:
FileStorage, WavPlayer.

2.2 Properties

2.2.1 Asynchroneous

Applies to
WavPlayer component.

Declaration
property Asynchronous: Boolean;

Description
The Asynchronous property controls whether sound will playing synchronously (if False) or
asynchronously (if True, defauly), relatively to the main application thread. If Asynchronous is True,
the sound will played asynchronously and the function returns immediately after beginning the
sound. To terminate an asynchronously played sound, call Stop method.

2.2.2 Looped

Applies to
WavPlayer component.

Declaration
property Looped: Boolean;

Description
The Looped property controls whether sound sould be played once (if False) or constantly looped.
To terminate looped sound use Stop method.

2.2.3 SoundType

Applies to
WavPlayer component.

Declaration
procedure SoundType: TWavPlayerSndType;

Description
The SoundType property specifies the type of a sound to play. When SoundType is stCustom,
WavPlayer will play custom sound specified in (uploaded to) WaveSound property (.WAV file
uploaded onto form). When SoundType is any other value (stAsterisk, stCloseProgram,
stCriticalStop, stDefaultSound, stExclamation, stExitWindows, stMaximize, stMenuCommand,

WavPlayer component 11

© 1998-2001, UtilMind Solutions®

stMenuPopup, stMinimize, stNewMailNotification, stOpenProgram, stProgramError, stQuestion,
stRestoreDown, stRestoreUp, stStartWindows), WavPlayer will play sound associated with
enumerated system events.

Note

 After selecting of any system sound, content of WaveSound property will be cleared.

See also
WaveSound property and TWavPlayerSndType type.

2.2.4 WaveSound

Applies to
WavPlayer component.

Declaration
property WaveSound: TStoredFile;

Description
The WaveSound property is the storage for custom wave-audio file. You may upload sound file at
design-time, double clicking on WaveSound property in Object Inspector.

To test uploaded sound - double click on component image.

See also
FileStorage component.

2.3 Methods

2.3.1 Play

Applies to
WavPlayer component.

Declaration
procedure Play;

Description
The Play method plays a waveform sound specified either by uploaded onto form in WaveSound
property or by system sound specified in SoundType property.

If Asynchronous property is True, sound will plays asynchronously and and the function returns
immediately after beginning the sound.

Usually Play method initiates playing of the sound only once. However, If Looped property is True,
sound will playing continuously. To terminate playing - call Stop method.

See also
Stop method.

2.3.2 Stop

Applies to
WavPlayer component.

Declaration

FileStorage component12

© 1998-2001, UtilMind Solutions®

procedure Stop;

Description
Call Stop method to terminate playing the sound.

See also
Play method.

2.4 Events

2.4.1 OnAfterPlay

Applies to
WavPlayer component.

Declaration
procedure OnAfterPlay: TNotifyEvent;

Description
The OnAfterPlay event occurs after playing the sound.

See also
OnBeforePlay event

2.4.2 OnBeforePlay

Applies to
WavPlayer component.

Declaration
procedure OnBeforePlay: TNotifyEvent;

Description
The OnBeforePlay event occurs before playing the sound.

See also
OnAfterPlay event

Installation Instructions 13

© 1998-2001, UtilMind Solutions®

3 Installation Instructions

Package without source code
to Delphi 2
 1. Unzip files from "Delphi2" directory to your "Delphi 2\Lib" directory.
 2. Start Delphi 2 IDE.
 3. Select "Component \ Install..." menu item.
 4. Press "Add" button and select "_FSReg.pas" file.
 5. Rebuild library.

to Delphi 3
 1. Unzip files from "Delphi3" directory and copy them to "Delphi 3\Lib".
 2. Start Delphi 3 IDE.
 3. Open "FileStorageD3.dpk" file.
 4. Install package to the components palette ("Install" button).

to Delphi 4
 1. Unzip files from "Delphi4" directory and copy them to "Delphi 4\Lib".
 2. Start Delphi 4 IDE.
 3. Open "FileStorageD4.dpk" file.
 4. Install package to the components palette ("Install" button).

to Delphi 5
 1. Unzip files from "Delphi5" directory and copy them to "Delphi 5\Lib".
 2. Start Delphi 5 IDE.
 3. Open "FileStorageD5.dpk" file.
 4. Install package to the components palette ("Install" button).

to Delphi 6
 1. Unzip files from "Delphi 6" directory and copy them to "Delphi 6\Lib".
 2. Start Delphi 6 IDE.
 3. Open "FileStorageD6.dpk" file.
 4. Install package to the components palette ("Install" button).

to Delphi 7
 1. Unzip files from "Delphi 7" directory and copy them to "Delphi 7\Lib".
 2. Start Delphi 7 IDE.
 3. Open "FileStorageD7.dpk" file.
 4. Install package to the components palette ("Install" button).

to C++ Builder 3
 1. Unzip files from "BCB3" directory and copy them to "CBuilder3\Lib".
 2. Start C++ Builder 3 IDE.
 3. Open "FileStorageCB3.bpk" file.
 6. Select "Project \ Make FileStorageCB3" menu item.
 7. Select "Component \ InstallPackages" menu item.
 8. Press "Add" button and select "FileStorageCB3.bpl" file.

to C++ Builder 4
 1. Unzip files from "BCB4" directory and copy them to "CBuilder4\Lib".
 2. Start C++ Builder 4 IDE.
 3. Open "FileStorageCB4.bpk" file.
 4. Install package to the components palette ("Install" button).

FileStorage component14

© 1998-2001, UtilMind Solutions®

to C++ Builder 5
 1. Unzip files from "BCB5" directory and copy them to "CBuilder5\Lib".
 2. Start C++ Builder 5 IDE.
 3. Open "FileStorageCB5.bpk" file.
 4. Install package to the components palette ("Install" button).

to C++ Builder 6
 1. Unzip files from "BCB6" directory and copy them to "CBuilder6\Lib".
 2. Start C++ Builder 6 IDE.
 3. Open "FileStorageCB6.bpk" file.
 4. Install package to the components palette ("Install" button).

Source code
 1. Uninstall / delete all previous (trial) instances of FileStorage.
 2. Unzip files from "Sources" directory and copy them to "..\Lib" directory.
 3. Run Delphi or ++ Builder IDE.
 4. Select "Component \ Install..." menu item.
 5. Press "Add" button and select "_FSReg.pas" file.
 6. Rebuild library.

4 License Agreement

Copyright
The FileStorage component (software) is Copyright © 1998-2002, by Utilmind Solutions® (Utilmind).
All rights reserved.
The authors - Utilmind Solutions® and Aleksey Kuznetsov (founder of Utilmind), exclusively own all
copyrights to the Advanced Application Controls (AppControls) and all other products distributed by
Utilmind Solutions®.

Liability disclaimer
THIS SOFTWARE IS DISTRIBUTED "AS IS" AND WITHOUT WARRANTIES AS TO
PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER
EXPRESSED OR IMPLIED. YOU USE IT AT YOUR OWN RISK. THE AUTHOR WILL NOT BE
LIABLE FOR DATA LOSS, DAMAGES, LOSS OF PROFITS OR ANY OTHER KIND OF LOSS
WHILE USING OR MISUSING THIS SOFTWARE.

Restrictions
You may not attempt to reverse compile, modify, translate or disassemble the software in whole or in
part. You may not remove or modify any copyright notice or the method by which it may be invoked.

Operating license
Unregistered version
You may distribute the unregistered version of software freely, provided that all files are included and
remain unmodified and that no extra files have been added to the package. You may not ask any
money for the distribution. You may use the unregistered version of software free of charge for
testing purposes, but if you want to use it for other purposes than testing - you have to register it
with the author.

Registered version (single user license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.

License Agreement 15

© 1998-2001, UtilMind Solutions®

You have the non-exclusive right to use registered version of the software only by a single person,
on a single computer at a time. You may physically transfer the software from one computer to
another, provided that the software is used only by a single person, on a single computer at a time.
In group projects where multiple persons will use the software, you must purchase an individual
license for each member of the group or purchase site license. Use over a "local area network"
(within the same locale) is permitted provided that the software is used only by a single person, on a
single computer at a time. Use over a "wide area network" (outside the same locale) is strictly
prohibited under any and all circumstances.

Registered version (site/team license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team only in one location (building complex). If you purchase
a site license, you may use the program in an unlimited number of your company's computers
within this area.

Registered version (Educational site license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your educational organisation (school/college/university etc) in one location
(building complex). If you buy a educational site license, you may use the program in an unlimited
number of your edicational organisation's computers within this area.

Registered version (World-wide license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team world-wide. If your company has many branches even
with thouthands of computers, world wide license covers them all.

Notes (clarification)
"Single-user license" means "single-developer license". "Site license" means that it can be used by
any number of software developers within your company.
You can use purchased components in ANY number of your projects and deploy the "end-user"
software to ANY number of your users/customers without any additional royalty fees. However you
are not permitted to distribute the component itself (the source code or .dcu files of components).

Back-up and transfer
You may make one copy of the software solely for "back-up" purposes, as prescribed by
international copyright laws. You must reproduce and include the copyright notice on the back-up
copy.

Terms
This license is effective until terminated. You may terminate it by destroying the program, the
documentation and copies thereof. This license will also terminate if you fail to comply with any
terms or conditions of this agreement. You agree upon such termination to destroy all copies of the
program and of the documentation, or return them to author.

Other rights and restrictions
All other rights and restrictions not specifically granted in this license are reserved by authors.

FileStorage component16

© 1998-2001, UtilMind Solutions®

5 Registration Information

FileStorage component is SHAREWARE. This means that you can try it out for free, but if you like it
and want to use it you have to register it with the author. Before continue read and accept
license agreement please.

The only difference between the unregistered and registered versions is that the registered one has
not message box with remind to register and works without Delphi (C++ Builder) running. You can
also purchase the source code, if you would like to have it, and be able to compile or modify the
FileStorage on any 32bit version of Delphi or C++ Builder.

If you would like to use the FileStorage and receive full, unrestricted version, priority support or even
source code — you have to purchase proper license.

All prices in US dollars. Registering entitles you to unlimited support via E-Mail, minor version updates
indefinitely and major version updates for 6 month from date of purchase.

Registration types:

Full, unrestricted version without source code:
Single user license:
· https://secure.element5.com/register.html?productid=140745 - $19,95
Site license:

· https://secure.element5.com/register.html?productid=140746 - $79,95

Full version including 100% Source Code:
Single user license:

· https://secure.element5.com/register.html?productid=140747 - $29,95
Site license:

· https://secure.element5.com/register.html?productid=140748 - $119,95

Comments
1. Site license covers a single organisation in one location (building complex). If you buy a site

license, you may use the software in unlimited number of your company's computers withing this
area. Site license is very cost-effective if you have many computers (many software developers).

See license agreement for more details.

	FileStorage component
	TFileStorage - Overview
	Properties
	AutoExtract
	Enabled
	ExtractTo
	CreatePath
	SubDirectory
	TopLevelDir

	Overwrite
	RemoveOnTerminate

	Count
	DataSize
	Files

	Methods
	Extract

	Events
	OnExtract
	OnExtracted

	FileStorage designer
	Playing .WAVs (example)

	WavPlayer component
	TWavPlayer - Overview
	Properties
	Asynchroneous
	Looped
	SoundType
	WaveSound

	Methods
	Play
	Stop

	Events
	OnAfterPlay
	OnBeforePlay

	Installation Instructions
	License Agreement
	Registration Information

