
Table of Contents

Foreword 0

Part I Components Overview 5

Part II Installation Instructions 5

Part III Registration Information 7

Part IV License Agreement 8

Part V auAutoUpgrader 10

... 101 TauAutoUpgrader

... 112 Properties

.. 11AutoCheck

.. 12AutoCheckDelay

.. 12CacheOptions

.. 13HTTPPassword

.. 14HTTPUsername

.. 14InfoFile

... 14Files

... 15UpgradeMethod

... 15UpgradeMsg

.. 16InfoFileURL

.. 17InternetOptions

.. 18MiscFilesUpgrade

.. 18Proxy

... 19AccessType

... 19ProxyBypass

... 20ProxyPassword

... 20ProxyPort

... 20ProxyServer

... 21ProxyUsername

.. 21RestartParams

.. 22ShowMessages

.. 23ThreadPriority

.. 24TransferBufferSize

.. 24VersionControl

.. 25VersionDate

.. 25VersionDateAutoSet

.. 25VersionNumber

.. 26Wizard

... 26Enabled

... 27HideFileLocation

... 27Language

... 28Pic118x218

... 28StayOnTop

... 283 Methods

IContents

I

© 1999-2002, UtilMind Solutions®

.. 28Abort

.. 29CheckUpdate

.. 30RestartApplication

... 304 Events

.. 30OnAborted

.. 30OnAfterRestart

.. 31OnBeginUpgrade

.. 32OnConnLost

.. 32OnDoOwnCloseAppMethod

.. 33OnEndUpgrade

.. 33OnFileDone

.. 33OnFileStart

.. 34OnHostUnreachable

.. 35OnLaterUpgrade

.. 36OnLostFile

.. 37OnNoInfoFile

.. 37OnNoUpdateAvailable

.. 38OnPasswordRequest

.. 39OnProgress

.. 41OnProxyAuthenticationRequest

... 415 Upgrade Information File

... 436 Self-upgrading mechanism

... 437 Calculation of upgrades

... 448 Screenshots

.. 44Application update wizard

.. 45Multi-language support

.. 46Access to protected area

.. 46Info-file designer

Part VI auHTTP 47

... 471 TauHTTP

... 492 Properties

.. 49AcceptTypes

.. 50AddHeaders

.. 51Agent

.. 51Busy

.. 51CacheOptions

.. 52FileName

.. 52HideOutputFile

.. 53HostName

.. 54InternetOptions

.. 55OutputFileAttributes

.. 56OutputFileName

.. 56Password

.. 57POSTData

.. 57Proxy

... 58AccessType

... 58ProxyBypass

... 59ProxyPassword

... 59ProxyPort

... 60ProxyServer

AutoUpgrader ProfessionalII

© 1999-2002, UtilMind Solutions®

... 60ProxyUsername

.. 60Range

... 61EndRange

... 61StartRange

.. 61Referer

.. 62RequestMethod

.. 63ShowGoOfflineMessage

.. 63Suspended

.. 64Timeouts

... 64ConnectTimeout

... 65ReceiveTimeout

... 65SendTimeout

.. 65Thread

.. 65ThreadPriority

.. 66TransferBufferSize

.. 66URL

.. 67Username

.. 67WaitThread

.. 68WaitTimeout

.. 68WorkOffline

... 693 Methods

.. 69Abort

.. 69IsGlobalOffline

.. 70Pause

.. 70Read

.. 71Resume

.. 72ReadRange

.. 72Upload

.. 73UploadByFieldNames

... 744 Events

.. 74OnAborted

.. 74OnAnyError

.. 74OnBeforeSendRequest

.. 75OnConnLost

.. 76OnDone

.. 77OnDoneInterrupted

.. 77OnHeaderInfo

.. 79OnHostUnreachable

.. 80OnHTTPError

.. 82OnOutputFileError

.. 82OnPasswordRequest

.. 83OnProgress

.. 85OnProxyAuthenticationRequest

.. 86OnRedirected

.. 86OnUploadCGITimeoutFailed

.. 86OnUploadFieldRequest

.. 89OnUploadProgress

.. 91OnWaitTimeoutExpired

... 925 Appendix: HTTP status codes

... 946 HTTPReadString

Part VII auThread 95

IIIContents

III

© 1999-2002, UtilMind Solutions®

... 951 TauThread

... 962 Properties

.. 96Handle

.. 96HandleExceptions

.. 97Priority

.. 97ReturnValue

.. 98Running

.. 98Suspended

.. 98Terminated

.. 99ThreadID

.. 99WaitThread

.. 99WaitTimeout

... 1003 Methods

.. 100Execute

.. 100Resume

.. 101Suspend

.. 101Synchronize

.. 102SynchronizeEx

.. 103Terminate

.. 103WaitFor

... 1034 Events

.. 103OnException

.. 104OnExecute

.. 105OnTerminate

.. 105OnWaitTimeoutExpired

Index 106

AutoUpgrader ProfessionalIV

© 1999-2002, UtilMind Solutions®

Components Overview 5

© 1999-2002, UtilMind Solutions®

1 Components Overview

auAutoUpgrader - able to automatically upgrade from the Web any Delphi/BCB application.
The AutoUpgrader will check your website for the newer releases of your software and, if the
newer version is available — it will download and update all files of your application "on the fly".
All this without a SINGLE LINE of code!
The AutoUpgrader Pro contains built-in Application Update Wizard (screenshot #1), built-in
multi-language support (it automatically recognize language on user's PC and show all
messages in native language (screenshot #2)). Current version automatically translates all
wizard's content to 13 languages: English, Spanish, German, French, Russian, Portuguese,
Italian, Dutch, Danish, Chinese (both), Estonian and Ukrainian. However, if you don't want to
use built-in Wizard, you can make customized progress-dialogs using numerous events.
With AutoUpgrader your customers will use only latest versions of your software!

auHTTP - allows to post and get any data from the Web via HTTP protocol. With auHTTP you
can grab Web pages, download files and documents (or only their headers without the content),
get results of the CGI programs (for example, results of web-based search engines /
databases), using either GET or POST request methods.
The auHTTP can grab web contents both in binary and text formats, supports cache of Internet
Explorer, can resume broken downloads and read data from password protected directories.

auThread - extremely easy to use enhancement of standard TThread class. All properties and
event handlers can be specified directly in the Object Inspector.

AutoUpgrader Pro (http://www.appcontrols.com)
Copyright © 1998-2005, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

2 Installation Instructions

Package without source code
to Delphi 2
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start Delphi 2 IDE.
 4. Select "Component \ Install..." menu item.
 5. Press "Add" button and select "_AACReg.pas" file.
 6. Rebuild library.

to Delphi 3
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start Delphi 3 IDE.
 4. Open "AutoUpgraderProD3.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 4
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

AutoUpgrader Professional6

© 1999-2002, UtilMind Solutions®

 3. Start Delphi 4 IDE.
 4. Open "AutoUpgraderProD4.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 5
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start Delphi 5 IDE.
 4. Open "AutoUpgraderProD5.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 6
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start Delphi 6 IDE.
 4. Open "AutoUpgraderProD6.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 7
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start Delphi 7 IDE.
 4. Open "AutoUpgraderProD7.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 2005
 1. Download "autoupgraderpro.zip" file.
 2. Create "..\Lib\AutoUpgraderPro" directory.
 3. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 4. Start Delphi 2005 IDE.
 5. Open "AutoUpgraderProD2005.dpk" file.
 6. Install package to the components palette (right-click on "AutoUpgraderProD2005.bpl" node in
the Project Manager and select "Install" menu item).

to C++ Builder 3
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start C++ Builder 3 IDE.
 4. Open "AutoUpgraderProCB3.bpk" file.
 5. Select "Project \ Make AutoUpgraderProCB3" menu item.
 6. Select "Component \ InstallPackages" menu item.
 7. Press "Add" button and select "AutoUpgraderProCB3.bpl" file.
 8. When you build a project, linker may raise some errors (i.e: Unresolved external
'InternetOpenA'). To avoid this, please add INET.LIB file (in CBuilder\Lib directory) to your project.
The INET.LIB contains references to functions of WinInet.dll (standard Internet library).

to C++ Builder 4
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start C++ Builder 4 IDE.
 4. Open "AutoUpgraderProCB4.bpk" file.
 5. Install package to the components palette ("Install" button).
 6. When you build a project, linker may raise some errors (i.e: Unresolved external
'InternetOpenA'). To avoid this, please add INET.LIB file (in CBuilder\Lib directory) to your project.
The INET.LIB contains references to functions of WinInet.dll (standard Internet library).

http://www.appcontrols.com/download/autoupgraderpro.zip

Installation Instructions 7

© 1999-2002, UtilMind Solutions®

to C++ Builder 5
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start C++ Builder 5 IDE.
 4. Open "AutoUpgraderProCB5.bpk" file.
 5. Install package to the components palette ("Install" button).
 6. When you build a project, linker may raise some errors (i.e: Unresolved external
'InternetOpenA'). To avoid this, please add INET.LIB file (in CBuilder\Lib directory) to your project.
The INET.LIB contains references to functions of WinInet.dll (standard Internet library).

to C++ Builder 6
 1. Create "..\Lib\AutoUpgraderPro" directory.
 2. Unzip files and copy them to "..\Lib\AutoUpgraderPro".
 3. Start C++ Builder 6 IDE.
 4. Open "AutoUpgraderProCB6.bpk" file.
 5. Install package to the components palette ("Install" button).
 6. When you build a project, linker may raise some errors (i.e: Unresolved external
'InternetOpenA'). To avoid this, please add WININET.LIB file (in CBuilder\Lib directory) to your
project. The WININET.LIB contains references to functions of WinInet.dll (standard Internet library).

Source Code
 1. Uninstall / delete all previous (trial) instances of AutoUpgrader Pro.
 2. Create "..\Lib\AutoUpgraderPro" directory.
 3. Unzip files from "Sources" directory and copy them to "..\Lib\AutoUpgraderPro".
 4. Run Delphi IDE.
 5. Select "Component \ Install..." menu item.
 6. Press "Add" button and select "_AUReg.pas" file.
 7. Rebuild library.

Note for C++ Builder developers

 When you are using the Internet components (i.e: auHTTP, auAutoUpgrader) don't forget to add
INET.LIB to your project (it can be found at "CBuilder\Lib" directory). This file contains the
references to routines from WinInet.dll. So if you got linker error such like following:
 [Linker Error] Unresolved external 'InternetCrackUrlA' referenced from
C:\PROGRAM FILES\BORLAND\CBUILDER5\PROJECTS\LIB\AUTOUPGRADERPROCB5.LIB
please don't worry and be aware that InternetCrackUrlA are used to parse the URL (split URL to
domain name, port, document name etc). To solve this problem, just add INET.LIB to your project
(use "Project | Add to project" menu item in C++ Builder IDE).

Advanced Application Controls (http://www.appcontrols.com)
Copyright © 1998-2005, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

3 Registration Information

AutoUpgrader Pro is SHAREWARE. This means that you can try it out for free, but if you like it and
want to use it you have to register it with the author. Before continue read and accept
license agreement please.

The only difference between the unregistered and registered versions is that the registered one has
not message box with remind to register and works without Delphi (C++ Builder) running. You can

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

AutoUpgrader Professional8

© 1999-2002, UtilMind Solutions®

also purchase the source code, if you would like to have it, and be able to compile or modify the
AutoUpgrader Pro on any 32bit version of Delphi or C++ Builder.

If you would like to use the AutoUpgrader Pro and receive full, unrestricted version, priority support or
even source code — you have to purchase proper license.

All prices are in European currency (Euros). Registering entitles you to unlimited support via E-Mail,
minor version updates indefinitely and major version updates for 6 month from date of purchase. You
can use registered components in any number of projects, there is no deployment and royaltee fees.

Registration types:

Full, unrestricted version without source code:
Single user license:

· https://secure.element5.com/register.html?productid=148983 - EUR 29,95
Site license:

· https://secure.element5.com/register.html?productid=148984 - EUR 109,95

Full version including 100% Source Code:
Single user license:

· https://secure.element5.com/register.html?productid=148985 - EUR 54,95
Site license:

· https://secure.element5.com/register.html?productid=148986 - EUR 199,95

Comments
1. Site license covers a single organisation in one location (building complex). If you buy a site

license, you may use the software in unlimited number of your company's computers withing this
area. Site license is very cost-effective if you have many computers (many software developers).

See license agreement for more details.

AutoUpgrader Pro (http://www.appcontrols.com)
Copyright © 1998-2005, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

4 License Agreement

Copyright
The AutoUpgrader Pro (software) is Copyright © 1998-2005, by Utilmind Solutions® (Utilmind). All
rights reserved.
The authors - Utilmind Solutions® and Aleksey Kuznetsov (founder of Utilmind), exclusively own all
copyrights to the Advanced Application Controls (AppControls) and all other products distributed by
Utilmind Solutions®.

Liability disclaimer
THIS SOFTWARE IS DISTRIBUTED "AS IS" AND WITHOUT WARRANTIES AS TO
PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER
EXPRESSED OR IMPLIED. YOU USE IT AT YOUR OWN RISK. THE AUTHOR WILL NOT BE
LIABLE FOR DATA LOSS, DAMAGES, LOSS OF PROFITS OR ANY OTHER KIND OF LOSS
WHILE USING OR MISUSING THIS SOFTWARE.

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

License Agreement 9

© 1999-2002, UtilMind Solutions®

Restrictions
You may not attempt to reverse compile, modify, translate or disassemble the software in whole or in
part. You may not remove or modify any copyright notice or the method by which it may be invoked.

Operating license
Unregistered version
You may distribute the unregistered version of software freely, provided that all files are included and
remain unmodified and that no extra files have been added to the package. You may not ask any
money for the distribution. You may use the unregistered version of software free of charge for
testing purposes, but if you want to use it for other purposes than testing - you have to register it
with the author.

Registered version (single user license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use registered version of the software only by a single person,
on a single computer at a time. You may physically transfer the software from one computer to
another, provided that the software is used only by a single person, on a single computer at a time.
In group projects where multiple persons will use the software, you must purchase an individual
license for each member of the group or purchase site license. Use over a "local area network"
(within the same locale) is permitted provided that the software is used only by a single person, on a
single computer at a time. Use over a "wide area network" (outside the same locale) is strictly
prohibited under any and all circumstances.

Registered version (site/team license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team only in one location (building complex). If you purchase
a site license, you may use the program in an unlimited number of your company's computers
within this area.

Registered version (Educational site license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your educational organisation (school/college/university etc) in one location
(building complex). If you buy a educational site license, you may use the program in an unlimited
number of your edicational organisation's computers within this area.

Registered version (World-wide license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team world-wide. If your company has many branches even
with thouthands of computers, world wide license covers them all.

Notes (clarification)
"Single-user license" means "single-developer license". "Site license" means that it can be used by
any number of software developers within your company.
You can use purchased components in ANY number of your projects and deploy the "end-user"
software to ANY number of your users/customers without any additional royalty fees. However you
are not permitted to distribute the component itself (the source code or .dcu files of components).

AutoUpgrader Professional10

© 1999-2002, UtilMind Solutions®

Back-up and transfer
You may make one copy of the software solely for "back-up" purposes, as prescribed by
international copyright laws. You must reproduce and include the copyright notice on the back-up
copy.

Terms
This license is effective until terminated. You may terminate it by destroying the program, the
documentation and copies thereof. This license will also terminate if you fail to comply with any
terms or conditions of this agreement. You agree upon such termination to destroy all copies of the
program and of the documentation, or return them to author.

Other rights and restrictions
All other rights and restrictions not specifically granted in this license are reserved by authors.

AutoUpgrader Pro (http://www.appcontrols.com)
Copyright © 1998-2005, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

5 auAutoUpgrader

5.1 TauAutoUpgrader

Overview
The AutoUpgrader component used for automatic update from the Web any Delphi/BCB
application. The AutoUpgrader will check your website out for the newest releases of your software
and, if the newest versions is available — download updates and upgrade your application "on the
fly". All this without a SINGLE LINE of code!

The AutoUpgrader Pro (included to AppControls pack) contains built-in Application Update Wizard
(screenshot #1), built-in multi-language support (it automatically recognize language on user's PC
and show all messages in native language (screenshot #2)). Current version automatically
translates all wizard's content to 25 languages: English, Spanish, German, French, Russian,
Portuguese, Italian, Dutch, Danish, Chinese (both), Estonian and Ukrainian. However, if you don't
want to use built-in Wizard, you can make customized progress-dialogs using numerous events.

When AutoUpgrader download files it automatically detects all Internet settings for current
connection, pre-configured in the Control Panel. However, you still can use own settings, specifying
preferable proxy-server or using direct connection.

If you store newer version of your program in password protected Web directories, you can pre-
configure the username/password to access files, or let AutoUpgrader to ask login information when
it necessary (screenshot #3).

When you release new version of your software — just create so-called InfoFile (which contains the
upgrade information; you can create it manually or using built-in designer (screenshot #4)), then
upload this file to your website.

With AutoUpgrader your customers will use only latest versions of your software!

How to use ?
First you need to create small file which contains the upgrade information (aka Info-file). You can

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

auAutoUpgrader 11

© 1999-2002, UtilMind Solutions®

create it by hands, using any text editor a'la NotePad, or using built-in InfoFIle Designer (double
click the "InfoFile" property in Object Inspector to invoke it). As already mentioned, this file contains
the upgrade information about your program. There listed all files (their location in the Web) which
need to be downloaded and replaced/updated locally and the special constant which identifies the
latest version of your program (see VersionNumber or VersionDate properties).

Upload the Info-file to your website and point its location in the InfoFileURL property.That's all! Every
time on detecting the Internet connection (see AutoCheck property), or when you call the
CheckUpdate method, the AutoUpgrader will read the upgrade information file from your website
and, if newer release of your application is available, it will try to automatically upgrade itself.

new! Since you can specify many files in the download queue, by default they all want to be
downloaded and updated when new version available (version date or number changed in the Info-
file). However, if you set MiscFilesUpgrade property to mfuOnlyIfSizeDifferent, the
AutoUpgrader will automatically compare the sizes of remote and local files to decide whether this
file really should be updated or not. Alternatively you can use OnFileStart event to receive brief
information about the file in download queue (it's size and date/time of last update) and decide
whether you want to download it or not.

Important note!

 C++ Builder programmers: Don't forget to add "INET.LIB" file (or "WININET.LIB" in C++ Builder
6 and higher, this file can be found in "..\CBuilderX\Lib" directory) to your project which uses the
AutoUpgrader. The INET.LIB contains the prototypes for required Internet routines from
WinInet.DLL.

How does it override old files with newer ?
The AutoUpgrader downloads all updated files to the application directory with "*.*.uTMP"
extension. It also set for them "temporary" and "hidden" attributes, so user will not see those files.

After successful downloading, the AutoUpgrader extracts so-called self-upgrading module
(Upgrader3.exe, 9KB), which performs local updates to the TEMP directory, execute it then
terminate the main app itself. The self-upgrading mechanism replaces all files with newer ones and
restart the main application.

See also the description of the self-upgrading mechanism, or check out the "Upgrader3.pas" file
included to the package, if you purchased the AutoUpgrader or AppControls pack with source code.

 If you don't want to replace files by AutoUpgrader, you can use external self-extracting archives or
setup-files which can extract files locally in "silent mode" (see description of RestartParams property
for more details).

 Note: If you wish to use AutoUpgrader for downloading just single setup-file which will perform
all further updates — make sure that UpgradeMethod = umUseExternalSetup. Otherwise the
self-upgrading module will replace your program with downloaded setup.

See also
auHTTP and auThread components;
Download executable demo-program of AutoUpgrader from
http://www.appcontrols.com/download/exe/AutoUpgraderProDemo.exe

5.2 Properties

5.2.1 AutoCheck

Applies to
auAutoUpgrader component.

http://www.appcontrols.com/download/exe/AutoUpgraderProDemo.exe

AutoUpgrader Professional12

© 1999-2002, UtilMind Solutions®

Declaration
property AutoCheck: Boolean

Description
The AutoCheck property controls whether the AutoUpgrader should automatically check fot the
newest version of your application, at once after detecting the Internet connection.

Set AutoCheck to True if you want to check updates automatically. Then AutoUpgrader will
constantly check the Internet connection status with 5 seconds interval. At once the AutoUpgrader
detects active Internet connection, it will download the Information-file (from location specified in the
InfoFileURL property). If the newer version of your application is available for download — it will try to
update it. (Otherwise, if no update available, it will kill timer and will not check upgrades anymore for
current application session.)

Set AutoCheck to False if you don't want to check updates automatically. To check for application
upgrades programmaticaly — call CheckUpdate method.

See also
AutoCheckDelay property;
CheckUpdate method; InfoFileURL and ShowMessages properties.

5.2.2 AutoCheckDelay

Applies to
auAutoUpgrader component.

Declaration
property AutoCheckDelay: Integer; // 10000 milliseconds by default (10
seconds)

Description
The AutoCheckDelay property specifies the time interval which should pass between application
start and checking for updates (if AutoCheck is True).

In case if the AutoUpgrader see that there is no connection to Internet established, it will check
connection and try to check updates each N seconds, specified in this property.

See also
AutoCheck property;
CheckUpdate method; InfoFileURL and ShowMessages properties.

5.2.3 CacheOptions

Applies to
auAutoUpgrader and auHTTP components.

Declaration
type
 TauCacheOption = (coAlwaysReload, coReloadIfNoExpireInformation,
 coReloadUpdatedObjects, coPragmaNoCache,
 coNoCacheWrite, coCreateTempFilesIfCantCache,
 coUseCacheIfNetFail);
 TauCacheOptions = set of TauCacheOption;

property CacheOptions: TauCacheOptions;

auAutoUpgrader 13

© 1999-2002, UtilMind Solutions®

Description
The CacheOptions property controls the cache options for the AutoUpgrader component and
determines how the component should use standard Internet Explorer's cache.

The cache control has following options:
Value Meaning

 coAlwaysReload Forces a download of the requested file, object, or directory listing
from the origin server, not from the cache.;

 coReloadIfNoExpireInformation Forces a reload if there was no Expires time and no LastModified
time returned from the server when determining whether to reload
the item from the network.;

 coReloadUpdatedObjects Reloads HTTP resources if the resource has been modified since
the last time it was downloaded;

 coPragmaNoCache Forces the request to be resolved by the origin server, even if a
cached copy exists on the proxy;

 coNoCacheWrite Does not add the downloaded entity to the cache;

 coCreateTempFilesIfCantCache Causes a temporary file to be created if the file cannot be cached;

 coUseCacheIfNetFail Returns the resource from the cache if the network request for
the resource fails due if connection with the server has been
reset, or the attempt to connect to the server failed.

Notes

 The AutoUpgrader autmatically set coPragmaNoCache flag to True when reading the Info-file.
Other options valid for both stages: checking the Info-file for intermation and when it download files.

 The cache of Internet Explorer is very smart, so it will re-download the files even if they has been
updated on the server, even if it already exists in the cache.
Using the cache is recommended! It will save you a lots of bandwidth if connection unexpectedly
lost on user PC, or user break the downloading on the half way, to upgrade the application a
moment later.

See also
InternetOptions property;
CheckUpdate and Abort methods.

5.2.4 HTTPPassword

Applies to
auAutoUpgrader component.

Declaration
property HTTPPassword: String;

Description
The HTTPPassword property specifies the password to access the data in password protected Web
directories. You don't need to specify the username/password if you reading non-protected data.

 You can also specify login information dynamically, when it neccessary, in the
OnPasswordRequest event handler, or in built-in password-request dialog (see screenshot #3), if
mPasswordReqest flag in ShowMessages property set to True.

See also

AutoUpgrader Professional14

© 1999-2002, UtilMind Solutions®

HTTPUsername and ShowMessages properties;
OnPasswordRequest event.

5.2.5 HTTPUsername

Applies to
auAutoUpgrader component.

Declaration
property HTTPUsername: String;

Description
The HTTPUsername property specifies the username to access the data in password protected
Web directories. You don't need to specify the username/password if you reading non-protected
data.

 You can also specify login information dynamically, when it neccessary, in the
OnPasswordRequest event handler, or in built-in password-request dialog (see screenshot #3), if
mPasswordReqest flag in ShowMessages property set to True.

See also
HTTPPassword and ShowMessages properties;
OnPasswordRequest event.

5.2.6 InfoFile

Applies to
auAutoUpgrader component.

Declaration
type
 TauAutoUpgraderInfo = class
 published
 property Files: TStrings;
 property UpgradeMethod: TauUpgradeMethod;
 property UpgradeMsg: String;
 end;

Description
The InfoFile structure is the set of properties which contains some information about application
update. AutoUpgrader does not use these properties at run-time. They only need to create, keep
and export the Info-files with special design-time editor (see screenshot).

 To invoke the editor at design-time and modify or export the Info-files, just double click the
InfoFile property in Object Inspector or component icon on your form.

5.2.6.1 Files

Applies to
auAutoUpgrader component as subproperty of InfoFile structure.

Declaration
property Files: TStringList;

Description
The Files property is the list of URLs (one URL per line) which points to files which should be

auAutoUpgrader 15

© 1999-2002, UtilMind Solutions®

downloaded on application upgrade.

All these files will be downloaded to replace with previous on application update (if UpgradeMethod
is umAutoUpgrade). In case if you want to redirect user to some URL without upgrading
(UpgradeMethod = umRedirectToURL), AutoUpgrader will redirect user to first listed URL.

See also
UpgradeMethod and UpgradeMsg properties;
Info-file example.

5.2.6.2 UpgradeMethod

Applies to
auAutoUpgrader component as subproperty of InfoFile structure.

Declaration
type
 TauUpgradeMethod = (umAutoUpgrade, umRedirectToURL);

property UpgradeMethod: TauUpgradeMethod;

Description
The UpgradeMethod property controls how you would like to upgrade your application: automatically
downloading and updating all newer files (umSelfUpgrade), or just redirecting users to first URL
listed in the Files property (umRedirectToURL).

There is three possible values:
Value Meaning

 umSelfUpgrade component should download and replace all newer files itself;

 umUseExternalSetup AutoUpgrader should download just setup-file which will locally extract all

required locally. The application will be restarted upon completion of
external installation.

 umRedirectToURL does not download anything. It just opens new browser window and redirect

users to first URL specified in Files property (in the Info-file).

Note

 Always use umUseExternalSetup option if you are really use setups to update files instead of
built-in mechanism. Otherwise, the AutoUpgrader will rename downloaded setup file to the name of
your main program, execute it, but the file of your main program will be locked.

In case if the UpgradeMethod = umUseExternalSetup (#method=1 in the Info-file), the setup
will extracted to the temporary folder (i.e: Windows\Temp) without locking any of your files.

See also
Files and UpgradeMsg properties of InfoFile stucture;
RestartParams property and OnAfterRestart event;
Info-file example.

5.2.6.3 UpgradeMsg

Applies to
auAutoUpgrader component as subproperty of InfoFile structure.

Declaration
property UpgradeMsg: String;

AutoUpgrader Professional16

© 1999-2002, UtilMind Solutions®

Description
The UpgradeMsg specifies the text string which will appears in standard dialog which asks user
about upgrade + passes to the OnBeginUpdate event handler. This can be release notes, list of
new features or anything else.

You can also leave the UpgradeMsg blank if you wish to display standard text message only.

(Screenshot: text of UpgradeMsg is rounded by red mark)

Notes
1. The standard text which appears in the dialog box which asks about update will be displayed in

native user's language (specified in Language property of Wizard structure). However this
custom text can be specified in only one language.

2. The upgrade-request dialog box will displayed only if mAskUpgrade flag of ShowMessages
property was set to True.

See also
Files and UpgradeMethod properties of InfoFile structure;
ShowMessages and Language properties;
Info-file example.

5.2.7 InfoFileURL

Applies to
auAutoUpgrader component.

Declaration
property InfoFileURL: String;

Description
The InfoFileURL property specifies the HTTP address where stored the Info-file (which contains the
upgrade information).

The location of the Info-file should be specified in following form:
[http[s]://]hostname[[:port]/path/filename]

Examples:
http://www.appcontrols.com/software/upgrades/startupman.inf
utilmind.com:80/products/someapp/app.info
https://www.yourhost.net/upgrade.inf

 The AutoUpgrader supports secure transaction semantics. This translates to using Secure
Sockets Layer/Private Communications Technology (SSL/PCT) and is only meaningful in HTTP
requests. You can specify URLs either with http:// or https:// prefixes.

http://www.appcontrols.com/software/upgrades/startupman.inf

auAutoUpgrader 17

© 1999-2002, UtilMind Solutions®

 If you would like to calculate amount of upgrades — you may specify in the InfoFileURL location
to your counter CGI script. See example of such script here.

See also
Info-file example; Calculation of upgrades.

5.2.8 InternetOptions

Applies to
auAutoUpgrader and auHTTP components.

Declaration
type
 TauInternetOption = (ioIgnoreCertificateInvalid,
ioIgnoreCertificateDateInvalid,
 ioIgnoreRedirectToHTTP, ioIgnoreRedirectToHTTPS,
 ioKeepConnection, ioNoAuthentication,
 ioNoAutoRedirect, ioNoCookies);
 TauInternetOptions := set of TauInternetOption;

property InternetOptions: TauInternetOptions;

Description
The InternetOptions property is the set of options used to specify some behaviors of auHTTP
component.

The property is set of following options:
Value Meaning

 ioIgnoreCertificateInvalid Disables checking of SSL/PCT-based certificates that are

returned from the server against the host name given in the
request. WinINet functions use a simple check against
certificates by comparing for matching host names and simple
wildcarding rules;

 ioIgnoreCertificateDateInvalid Disables checking of SSL/PCT-based certificates for proper
validity dates;

 ioIgnoreRedirectToHTTP Disables detection of this special type of redirect. When this flag
is used, WinINet functions transparently allow redirects from
HTTPS to HTTP URLs;

 ioIgnoreRedirectToHTTPS Disables detection of this special type of redirect. When this flag
is used, WinINet functions transparently allow redirects from
HTTP to HTTPS URLs;

 ioKeepConnection Uses keep-alive semantics, if available, for the connection. This
flag is required for Microsoft Network (MSN), NT LAN Manager
(NTLM), and other types of authentication;

 ioNoAuthentication Does not attempt authentication automatically;

 ioNoAutoRedirect Does not automatically handle redirection;

 ioNoCookies Does not automatically add cookie headers to requests, and does
not automatically add returned cookies to the cookie database.

See also
CacheOptions property;
CheckUpdate and Abort methods;
OnProxyAuthenticationRequest events.

AutoUpgrader Professional18

© 1999-2002, UtilMind Solutions®

5.2.9 MiscFilesUpgrade

Applies to
auAutoUpgrader component.

Declaration
type
 TauMiscFilesUpgradeBehavior = (mfuDownloadAlways,
mfuOnlyIfSizeDifferent)

property MiscFilesUpgrade: TauMiscFilesUpgradeBehavior;

Description
The MiscFilesUpgrade property determines how the component should behave when it about to
download the updated files.

There are two possible values for MiscFilesUpgrade property:
Value Meaning

 ubAlwaysDownload this is devault value for this property. If it is set, the AutoUpgrader will always
download all files in queue, as described in the Info-file, disregarding of their
sizes, even if the remote file has the same size as its local analog;

 ubOnlyIfSizeDifferent specifies that the AutoUpgrader should automatically compare the size of file
which about to be downloaded with the size of file which already exists in
local hard disk. If the sizes are equal, the component will not download it and
pass to next file in the download queue.

 Alternatively you can write the OnFileStart event handler to get the information about file which
about to be downloaded and decide whether you really want to download it.

 Important notes
1. The behavior specified in this property is concerned only for miscellaneous files in the download

queue. The main executable file of the application will be always updated when the new update
available (version date or number changed in the Info-file).

2. This property take effect only if UpgradeMethod = umSelfUpgrade (#method=0 in the Info-file),
so the upgrade performed by downloading and replacing every file separately.

See also
OnFileStart event;
Info-file example.

5.2.10 Proxy

Applies to
auAutoUpgrader and auHTTP components.

Declaration
type
 TauHTTPAccessType = (atPreconfig, atDirect, atUseProxy);
 TauHTTPProxy = class
 published
 property AccessType: TauHTTPAccessType; // atPreconfig by default
 property ProxyServer: String;
 property ProxyPort: Integer; // 8080 by default
 property ProxyBypass: TStrings; // 127.0.0.1 by default
 property ProxyUsername: String;

auAutoUpgrader 19

© 1999-2002, UtilMind Solutions®

 property ProxyPassword: String;
 end;

property Proxy: TauHTTPProxy;

Description
The Proxy structure controls the connection type for the AutoUpgrader component and settings for
estabilishing connection via proxy. Connection type (AccessType) can be "pre-configured"
(AutoUpgrader will use settings from Control Panel), direct, or via specified proxy server.

If proxy requires authentication — write OnProxyAutenticationRequest event handler to prompt and
specify user's login information.

See also
OnProxyAuthenticationRequest event.

5.2.10.1 AccessType

Applies to
auAutoUpgrader and auHTTP components as subproperty of Proxy structure.

Declaration
type
 TauHTTPAccessType = (atPreconfig, atDirect, atProxy);

property AccessType: TauHTTPAccessType;

Description
The AccessType property controls how the auHTTP component should access the remote server to
download data. The AccessType can be direct or via the proxy server. If you'd like to use the access
type previously configured in the Control Panel — leave the AccessType = atPreconfig.

Values Meaning

 atPreconfig retrieves the proxy or direct configuration from the registry (user can configure the

access type in the Control Panel);

 atDirect uses the direct connection and resolves all host names locally;

 atProxy access the remote data via the proxy server. Passes all requests to the proxy, unless
a proxy bypass list is not empty and the name to be resolved bypasses the proxy. To
specify the proxy server and port — use ProxyServer and ProxyPort properties. To
configure bypass list — use ProxyBypass property.

See also
ProxyServer, ProxyPort and ProxyBypass properties.

5.2.10.2 ProxyBypass

Applies to
auAutoUpgrader and auHTTP components as subproperty of Proxy structure.

Declaration
property ProxyBypass: String;

Description
The ProxyBypass contains the list of host names or IP addresses, or both, that should not be routed
through the proxy. The list can contain wildcards. If the ProxyBypass is empty, the component reads

AutoUpgrader Professional20

© 1999-2002, UtilMind Solutions®

the bypass list from the registry.

 You can use wild cards to match domain and host names or addresses — for example,
www.*.com;128.*;240.*;*.mygroup.*;*x* and so on. Use semicolon (;) to separate entries.

See also
ProxyServer and ProxyPort properties.

5.2.10.3 ProxyPassword

Applies to
auAutoUpgrader and auHTTP components as subproperty of Proxy structure.

Declaration
property ProxyPassword: String;

Description
The ProxyPassword property specifies the password required for connection via proxy server, if it's
require secure authentication.

 Alternativaly you can write OnProxyAuthenticationRequest event handler and specify proxy
username and password dynamically.

Note

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

See also
ProxyUsername and InternetOptions properties;
OnProxyAuthenticationRequest event.

5.2.10.4 ProxyPort

Applies to
auAutoUpgrader and auHTTP components as subproperty of Proxy structure.

Declaration
property ProxyPort: Integer;

Description
The ProxyPort property specifies the port number for the proxy server. The default value for proxy
ports is 8080.

See also
ProxyServer and ProxyBypass properties.

5.2.10.5 ProxyServer

Applies to
auAutoUpgrader and auHTTP components as subproperty of Proxy structure.

Declaration
property ProxyServer: String;

Description

auAutoUpgrader 21

© 1999-2002, UtilMind Solutions®

The ProxyServer property specifies the host name of the proxy server to use if the proxy access was
specified in the AccessType property.

See also
ProxyPort and ProxyBypass properties.

5.2.10.6 ProxyUsername

Applies to
auAutoUpgrader and auHTTP components as subproperty of Proxy structure.

Declaration
property ProxyUsername: String;

Description
The ProxyUsername property specifies the username required for connection via proxy server, if it's
require secure authentication.

 Alternativaly you can write OnProxyAuthenticationRequest event handler and specify proxy
username and password dynamically.

Note

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

See also
ProxyPassword and InternetOptions properties;
OnProxyAuthenticationRequest event.

5.2.11 RestartParams

Applies to
auAutoUpgrader component.

Declaration
property RestartParams: String;

Description
The RestartParams property specifies the command-line arguments which should be used on
restarting the updated application. When the application receives these command-line parameters
(on restarting after update) — it triggers OnAfterRestart event.

 The RestartParams property can be also used to specify command-line options for another
programs which will secretly extract your files locally on user's PC. This can be the setup program or
self-extracting archive, which may require some command line options to extract files in "silent
mode".

For example, you think that local update is better done by a setup program. So you just need to
download the setup file and execute it with "silent installation" command line option. The setup will
locally extract all required files then run the main program upon completion.

Let's suppose you are using Inno Setup (http://www.jrsoftware.org/isinfo.htm). Then just set the
RestartParams property to "/silent" or "/verysilent" and point the #url in the InfoFile to your setup file.

http://www.jrsoftware.org/isinfo.htm

AutoUpgrader Professional22

© 1999-2002, UtilMind Solutions®

Important note!

 If you wish to use AutoUpgrader just for downloading the external setup program which will
locally extract all required files, make sure that UpgradeMethod property set to
umUseExternalSetup (or, another words, #method=1 in the InfoFile).

See also
OnAfterRestart event, UpgradeMethod property;
InfoFile example.

5.2.12 ShowMessages

Applies to
auAutoUpgrader component.

Declaration
type
 TauAutoUpgraderShowMessages = set of (mAskUpgrade, mConnLost,
mHostUnreachable, mLostFile, mNoInfoFile, mNoUpdateAvailable,
mPasswordRequest);

property ShowMessages: TauAutoUpgraderShowMessages;

Description
The ShowMessages is the set of flags which determines which standard notification messages and
request dialogs should or should not be automatically displayed / handled on some AutoUpgrader's
events.

These settings let's you to use AutoUpgrader without additional coding of the event handers. Text
for messages translated accordingly to settings specified in Language property of Wizard structure.

There is the list of standard flags. Set some of them to True to enable automatic handling and
displaying of these notifications, or set to False to disable them. Alternatively you may use
numerous events which duplicates standard messages and allows to write custom processing.
Flags Meaning

 mAskUpgrade when mAskUpgrade is True, AutoUpgrader will notify user that newer version

is available for download and whether user would like to upgrade it. When
mAskUpgrade is False it will try to upgrade the application without
confirmation. To hook this event — write the OnBeginUpgrade event handler;

 mConnLost notifies user about disconnection, when it True. If you'd like to use custom

message box — set mConnLost flag to False and write your own
OnConnLost event handler;

 mHostUnreachable notifies user that requested remote host is unreachable. Most common

reasons is: (a) user currently disconnected from Internet; (b) remote host is
down; (c) wrong hostname in the InfoFileURL property or in the list of Files
which should be downloaded and updated. By default this flag is disabled
(False). You can catch this event using OnHostUnreachable handler.

 mLostFile the requested file was not found in the Internet addres specified in remote

Info-file. This dialog asks user whether he(she) like to skip lost file and try to
continue upgrade without it. Set this flag to False and write OnLostFile event
handler to impelement custom dialog or to Abort the upgrading when this
happends;

 mNoInfoFile the file which contains the upgrade information was is inaccessible or was not
found by address specified in the InfoFileURL. This flag disabled by default.

auAutoUpgrader 23

© 1999-2002, UtilMind Solutions®

Use OnNoInfoFile event to make some actions if the Info-file was not found;

 mNoUpdateAvailable notifies user that update is not available and he(she) currently using

most recent version of the application. Disabled by default. Set
mNoUpdateAvailable it to True or write OnNoUpdateAvailable event handler;

 mPasswordRequest ensures whether AutoUpgrader should automatically asks the username and

password, if some file placed in password protected directory. Standard
password-request dialog looks like this. To disable it and/or use custom
password-request dialog — set mPasswordRequest flag to False and write
OnPasswordRequest event handler.

Recomendations

 If your program looking for its updates automatically at once the AutoUpgrader detects the
Internet connection (AutoCheck = True), we strongly recomend to turn off some standard error
messages like mHostUnreachable, mNoInfoFile, mNoUpdate to not confuse user with
unexpected error messages. By default these options is turned off.

See also
InfoFileURL property and InfoFile structure;
OnConnLost, OnHostUnreachable, OnLostFile, OnNoInfoFile, OnNoUpdateAvailable and
OnPasswordRequest events;
Example of server-based file which contains upgrade information (Info-file).

5.2.13 ThreadPriority

Applies to
auAutoUpgrader and auHTTP components.

Declaration
property ThreadPriority: TThreadPriority;

Description
ThreadPriority indicates the priority used when scheduling the thread. Adjust the priority higher or
lower as needed.

TThreadPriority type defines the possible values for the Priority property of the auThread
component, as defined in the following table. The system schedules CPU cycles to each thread
based on a priority scale; the Priority property adjusts a thread's priority higher or lower on the scale.

Values Meaning

 tpIdle The thread executes only when the system is idle. The system will not interrupt
other threads to execute a thread with tpIdle priority.

 tpLowest The thread's priority is two points below normal.

 tpLower The thread's priority is one point below normal.

 tpNormal The thread has normal priority.

 tpHigher The thread's priority is one point above normal.

 tpHighest The thread's priority is two points above normal.

 tpTimeCritical The thread gets highest priority.

Warning
Boosting the thread priority of a CPU intensive operation may "starve" the other threads in the
application. Only apply priority boosts to threads that spend most of their time waiting for external
events.

AutoUpgrader Professional24

© 1999-2002, UtilMind Solutions®

See also
auThread component.

5.2.14 TransferBufferSize

Applies to
auAutoUpgrader and auHTTP components.

Declaration
type
 TauBufferSize = 256..MaxInt; // 2147483647 bytes maximum

property TransferBufferSize: TauBufferSize; // 4096 bytes by default

Description
The TransferBufferSize property specifies the size of buffer (in bytes) for writing or reading data from
the Web.

The OnProgress event will be triggered after downloading each block with size specified in this
property.

See also
OnProgress event.

5.2.15 VersionControl

Applies to
auAutoUpgrader component.

Declaration
type
 TauAutoUpgraderVersionControl = (byDate, byNumber);

property VersionControl: TauAutoUpgraderVersionControl;

Description
The VersionControl property determines which property will used for version control — VersionDate
(#date variable in the Info-file) or VersionNumber (#version variable in the Info-file).

If VersionControl is byDate, then after reading the Info-file (from location specified in InfoFileURL),
AutoUpgrader will compare #date variable of Info-file with value specified in VersionDate property.
If VersionDate lower than date stated in #date variable, AutoUpgrader will think that newest version
of your application already available on your Web site and will try to upgrade the software on user's
PC. Value of the VersionNumber property will be ignored.

If VersionControl is byNumber, then after reading the Info-file, AutoUpgrader will compare #number
variable with value of VersionNumber property. If VersionNumber is not equal to #number variable,
AutoUpgrader will try to upgrade your application on user's machine, guessing that newest release
version available for download. VersionDate will be ignored.

See also
VersionDate, VersionNumber and InfoFileURL properties.

auAutoUpgrader 25

© 1999-2002, UtilMind Solutions®

5.2.16 VersionDate

Applies to
auAutoUpgrader component.

Declaration
property VersionDate: String;

Description
The VersionDate property specifies the release date of current version of your application. This value
can be always set automatically at design-time if VersionDateAutoSet property is True.

The value of VersionDate property must have following format:
MM/DD/YYYY (for example, 02/24/2000, that is 24 February 2000). (This is standard US short date
style, little bit inconvenient for Europeans though<g>)

 If VersionControl is byDate, then after reading the Info-file from the Web, AutoUpgrader will
compare #date variable of Info-file with value in VersionDate property. If VersionDate lower than
date specified in #date variable, AutoUpgrader will guess that newer version already available on
your Web site and will try to upgrade your application on user's PC. VersionNumber property will be
ignored.

See also
VersionControl, VersionDateAutoSet and VersionNumber properties.

5.2.17 VersionDateAutoSet

Applies to
auAutoUpgrader component.

Declaration
property VersionDateAutoSet: Boolean;

Description
The VersionDateAutoSet property controls whether the value of VersionDate property should be
automatically updated on every application rebuild.

When VersionDateAutoSet is True, VersionDate property will contain only current date (date of last
recompiling).

See also
VersionDate property.

5.2.18 VersionNumber

Applies to
auAutoUpgrader component.

Declaration
property VersionNumber: String;

Description
The VersionNumber property specifies current version number of your application. Use this property
to specify the version number (or any text string which identifies current version) if you perform
VersionControl byNumber.

AutoUpgrader Professional26

© 1999-2002, UtilMind Solutions®

 If VersionControl is byNumber, then after reading the Info-file from the Web, AutoUpgrader will
compare #number variable with value in VersionNumber property. If VersionNumber is not equal to
value specified in #number variable, AutoUpgrader will try to upgrade your application on user's PC,
guessing that newest version already available for download. VersionDate property will be ignored.

See also
VersionControl and VersionDate properties;
Info-file example.

5.2.19 Wizard

Applies to
auAutoUpgrader component.

Declaration
type
 TauAutoUpgraderWizard = class
 published
 property Enabled: Boolean default True;
 property HideFileLocation: Boolean;
 property Pic118x218: TBitmap;
 property Language: TauAutoUpgraderLanguage;
 property StayOnTop: Boolean;
 end;

Description
The Wizard structure allows to specify some preferences for "Application update wizard" dialog.

Purpose of the "Application update wizard" destined allows you to implement auto-upgrade
mechanism to your software with just single or without any line of code, don't wasting time to
programming the event handers and progress dialogs.

The AutoUpgrader component automatically supports number of various languages

See also
ShowMessages property.

5.2.19.1 Enabled

Applies to
auAutoUpgrader component as subproperty of Wizard structure.

Declaration
property Enabled: Boolean; // True by default

Description
The Enabled property of Wizard structure controls whether you would like to use built-in "Application
update wizard" dialog in your auto-upgradable application.

By default, wizard is enabled. However, if you wish to implement your own, custom progress dialog
using numerous events, just set Enabled to False and wizard will not be used.

See also
HideFileLocation, Enabled, Language, Pic118x218 and StayOnTop properties.

auAutoUpgrader 27

© 1999-2002, UtilMind Solutions®

5.2.19.2 HideFileLocation

Applies to
auAutoUpgrader component as subproperty of Wizard structure.

Declaration
property HideFileLocation: Boolean; // False by default

Description
The HideFileLocation property determines whether the location of downloading files should be
hidden in the Application Update Wizard window.

By default users can see from where the file are downloading, but if you wish to hide the file name
and location — just set this property to True.

See also
Enabled, Language, Pic118x218 and StayOnTop properties.

5.2.19.3 Language

Applies to
auAutoUpgrader component as subproperty of Wizard structure.

Declaration
type
{ Newer versions of AutoUpgrader component may contain much more
languages! Check out version history for AppControls library at:
http://www.appcontrols.com/appcontrols/history.html }
 TauAutoUpgraderLanguage = (wlAuto, wlEnglish, wlRussian,
 wlGerman, wlFrench, wlSpanish,
 wlPortuguese, wlPortugueseBrazilian,
 wlItalian, wlDutch, wlDanish,
 wlSwedish, wlFinnish, wlEstonian,
 wlUkrainian, wlPolish, wlCzech,
 wlHungarian, wlRomanian, wlCatalan,
 wlBasque, wlAfrikaans,
wlChineseTraditional,
 wlChineseSimplified, wlIndonesian, wlMalay,
 wlIcelandic);

property Language: TauAutoUpgraderLanguage; // wlAuto by default

Description
The Language property specifies the language which will be used to display all standard text
messages within the AutoUpgrader component.

When you specifying the Language, all text in notification messages and the "Appliction update
wizard" will be translated accordingly (see screenshot #2).

By default Language = wlAuto, that means that AutoUpgrader should check out current regional
settings on user PC and use his native language, it's possible. If you wish to test this feature and
temporary change your regional settings — go to the "Control Panel" and doubleclick "Regional
Settings" icon.

See also
ShowMessages property;

http://www.appcontrols.com/appcontrols/history.html

AutoUpgrader Professional28

© 1999-2002, UtilMind Solutions®

Enabled, HideFileLocation, Pic118x218 and StayOnTop properties of Wizard structure.

5.2.19.4 Pic118x218

Applies to
auAutoUpgrader component as subproperty of Wizard structure.

Declaration
property Pic118x218: TBitmap;

Description
The Pic118x218 property specifies the bitmap image which will be displayed at the left side of
Application Update Wizard.

You can specify picture with ANY size, however it will stretched to fit bounds of the panel where
Width = 118 pixels and Height = 218 pixels. If picture is not specified then AutoUpgrader will display
default bitmap (see screenshot).

See also
Enabled, Language and StayOnTop properties.

5.2.19.5 StayOnTop

Applies to
auAutoUpgrader component as subproperty of Wizard structure.

Declaration
property StayOnTop: Boolean; // True by default

Description
The StayOnTop property specifies whether the Application Update Wizard form should stay over
other windows of your application, so user will always see the update progress.

Note

 The StayOnTop property controls the topmost position only within single application. Setting the
StayOnTop to True will NOT make the Wizard stay over other application's windows.

See also
Enabled, HideFileLocation, Language and Pic118x218 properties.

5.3 Methods

5.3.1 Abort

Applies to
auAutoUpgrader and auHTTP components.

Declaration
procedure Abort;

Description
The Abort method terminates the upgrade process on any stage. Call it to imediately stop the
upgrading.

After successful termination the OnAborted event occurs.

auAutoUpgrader 29

© 1999-2002, UtilMind Solutions®

 AutoUpgrader can automatically resume incomplete download, because it download all files to
cache, in case if you have specified to use it in CacheOptions. To resume the upgrade — just call
CheckUpdate method again.

See also
CheckUpdate method;
OnAborted event;
CacheOptions property.

5.3.2 CheckUpdate

Applies to
auAutoUpgrader component.

Declaration
function CheckUpdate(JustCheckIsUpdateAvailable: Boolean = False):
Boolean;

Description
Call CheckUpdate method to check for the application updates and initiate the upgrade process (if
newer version are really exists, and JustCheckIsUpdateAvailable parameter is False on function
call).

In case if you just want to check whether update available, without any message boxes — call this
method as CheckUpdate(True), and check whether update are available in function result.

How does it works?
When you call CheckUpdate method, the AutoUpgrader will download the file which contains the
upgrade information (Info-file) from the URL specified in InfoFileURL property. If AutoUpgrader can
not read remote information file, the OnNoInfoFile event occurs (or OnHostUnreachable, in case if
user currently disconnected from Internet).

If file which contains the upgrade information has successfully downloaded, AutoUpgrader parses it
to check whether the newer version of application already available for download. If compares the
#date variable in Info-file with VersionDate property, or #number variable with VersionNumber
property (this depends on method which you using for VersionContorl).

If new version are really exists, it fires OnBeginUpgrade event, then initiate downloading of all
updated files to replace them locally.

Example
Delphi:
procedure TForm1.CheckUpdateBtnClick(Sender: TObject);
begin
 auAutoUpgrader1.CheckUpdate;
end;

C++ Builder:
void __fastcall TForm1::CheckUpdateBtn1Click(TObject *Sender)
{
 auAutoUpgrader1->CheckUpdate();
}

See also

AutoUpgrader Professional30

© 1999-2002, UtilMind Solutions®

Abort method; Info-file example;
AutoCheck and VersionControl properties;
OnBeginUpgrade, OnNoUpdateAvailable and OnNoInfoFile events.

5.3.3 RestartApplication

Applies to
auAutoUpgrader component.

Declaration
procedure RestartApplication(const Params: String {$IFDEF D4} = ''
{$ENDIF});

Description
The RestartApplication used to restart the application which calls this method, with command-line
parameters specified in Params parameter.

If Params is not specified ('', empty text), the application will be restarted with parameters specified
in RestartParams property.

 If the RestartApplication method is called after checking the the application for updates
(CheckUpdate method), it will try to upgrade your application (replace old files with new, which was
downloaded with *.uTMP extension), using the upgrade method specified in the Info-file.

 You can also use this method to restart and upgrade your application "manually", instead of
automatic restart which can be hooked and disabled in OnEndUpgrade event handler, but anyway,
do not worry to call this method if you want to restart your application for ANY reason.

See also
RestartParams property;
CheckUpdate and Abort methods;
OnEndUpgrade event;
Info-file example.

5.4 Events

5.4.1 OnAborted

Applies to
auAutoUpgrader and auHTTP components.

Declaration
property OnAborted: TNotifyEvent;

Description
The OnAborted event occurs when user canceled the upgrade process in the "Application update
wizard" (see screenshot), or after calling the Abort method.

See also
Abort method.

5.4.2 OnAfterRestart

Applies to
auAutoUpgrader component.

auAutoUpgrader 31

© 1999-2002, UtilMind Solutions®

Declaration
property OnAfterRestart: TNotifyEvent;

Description
The OnAfterRestart event occurs on first start of upgraded application. Write this event handler to
do some specific actions after successful program update and after restart (i.e: to show some
"history" notes, etc).

 When application restarts after its upgrade, it execute itself with command-line parameter
specified in RestartParams property. The AutoUpgrader simply checks whether this argument exists
if ParamStr(1) = RestartParams then

then, in case of need, fires OnAfterRestart event.

Remark

 The AutoUpgrader could not trigger this event if you use some setup program or self-extracting
archive to replace files from archive after downloading, instead of updating them with built-in
updating mechanism. See description of RestartParams property for more details.

See also
RestartParams property; OnEndUpgrade event.

5.4.3 OnBeginUpgrade

Applies to
auAutoUpgrader component.

Declaration
type
 TauAUBeginUpgradeEvent = procedure(Sender: TObject;
 UpgradeMsg: String; UpgradeMethod: TauUpgradeMethod;
 Files: TStringList; var CanUpgrade: Boolean) of object;

property OnBeginUpgrade: TauAUBeginUpgradeEvent;

Description
The OnBeginUpgrade event occurs when newer version of your application is available for download
and AutoUpgrader are ready to upgrade it.

The OnBeginUpdate event occurs after successful downloading of the Info-file (which contains
upgrade information), from location specified in InfoFileURL property. AutoUpgrader parses the info-
file and retrieve the information required for upgrade. Some of this information passes to the
OnBeginUpgrade event handler as parameters:

Parameter Meaning

 UpgradeMsg this is the text string, specified in the downloaded Info-file, which describes
release notes or new features in recent version. See UpgradeMsg property of the
InfoFile structure for more information;

 UpgradeMethod determines how the application should be updated. Value can be either
umAutoUpgrade (updated files will be automatically downloaded and replaced)
or umRedirectToURL (user will redirected to first URL listed in Files parameter).
See UpgradeMethod property for more information;

 Files the list of URLs to files which should be downloaded and updated locally;

 CanUpgrade set this variable to False if you do NOT want to continue the upgrade. To
decide whether you want to download each file separately — use OnFileStart

AutoUpgrader Professional32

© 1999-2002, UtilMind Solutions®

event.

 At once after this event the AutoUpgrader will show the "Application update wizard" (if it is
Enabled).

See also
OnEndUpgrade, OnProgress, OnFileStart and OnFileDone events;
Wizard structure.

5.4.4 OnConnLost

Applies to
auAutoUpgrader component.

Declaration
property OnConnLost: TNotifyEvent;

Description
The OnConnLost event occurs when the connection with remote server lost for some reason, at the
moment of downloading the data.

Write the OnConnLost event hander to implement custom message box which notify user about
disconnection from Internet, or to perform some specific actions when the connection lost on
downloading the data.

 The AutoUpgrader have the standard dialog box, destineddestined to notify user about this event.
If you wish to show this message automatically (in native user's language, specified in Language
property), set mConnLost flag of ShowMessages property to True, or otherwise, set it to False if
don't want to display this message automatically.

See also
ShowMessages and Language properties;
OnHostUnreachable and OnLostFile events.

5.4.5 OnDoOwnCloseAppMethod

Applies to
auAutoUpgrader component.

Declaration
property OnDoOwnCloseAppMethod: TNotifyEvent;

Description
The DoOwnCloseAppMethod can be used to write your own method which will close the application
before upgrade and restart of the updated application.

Remarks

 If you write this method, the AutoUpgrader will NOT execute its own methods which
automatically close the application. You should handle it programmatically in this event handler.

 By default, if this event is not assigned, the AutoUpgrader will execute following code to
shutdown the application:
procedure ShutdownApplication;
begin
 if Assigned(Application.MainForm) then

auAutoUpgrader 33

© 1999-2002, UtilMind Solutions®

 Application.MainForm.Close;
 Application.Terminate;
end;

See also
OnEndUpgrade and OnAfterRestart events.

5.4.6 OnEndUpgrade

Applies to
auAutoUpgrader component.

Declaration
property OnEndUpgrade: TNotifyEvent;

Description
The OnEndUpgrade event occurs when application has successfully updated and about to be
restarted.

See also
OnDoOwnCloseAppMethod, OnAfterRestart and OnBeginUpgrade events.

5.4.7 OnFileDone

Applies to
auAutoUpgrader component.

Declaration
type
 TauAUFileDoneEvent = procedure(Sender: TObject;
 FileURL: String) of object;

property OnFileDone: TauAUFileDoneEvent;

Description
The OnFileDone event occurs when AutoUpgrader successfully downloaded one file from the
queue. The FileName parameter is the path and the file name where the file has been stored after
downloading.

 To get all files which should to be updated — use Files parameter in the OnBeginUpdate event
handler. If you wish to hook the event when the file is about to be downloaded and decide whether
you really want to download it — use OnFileStart event.

See also
OnFileStart, OnBeginUpgrade, OnEndUpgrade and OnProgress events.

5.4.8 OnFileStart

Applies to
auAutoUpgrader component.

Declaration
type
 TauAUFileStartEvent = procedure(Sender: TObject;
 const FileURL: String; FileSize: Integer; FileTime: TDateTime;
 var CanUpgrade: Boolean) of object;

AutoUpgrader Professional34

© 1999-2002, UtilMind Solutions®

property OnFileStart: TauAUFileStartEvent;

Description
The OnFileStart event occurs after receiving the headers of the file which is about to be downloaded.

Write the OnFileStart event handler to get the name and size of file which about to be downloaded,
plus the date/time of its last modification (time when it has been uploaded to your website). Also,
you can use this event to decide, whether you really want to download this file. If your program think
that this file should already updated — set CanUpgrade parameter to False and AutoUpgrader will
not download it from your website, and will pass to next file in the download queue.

 Alternatively, if you don't want to download files only in case if their sizes are different, you can set
MiscFilesUpgrade property to mfuOnlyIfSizeDifferent, and the AutoUpgrader will
automatically compare the size of remote and local files to decide whether they should be upgraded
or not.

See also
MiscFilesUpgrade property;
OnFileDone, OnBeginUpgrade, OnEndUpgrade and OnProgress events;
OnHeaderInfo event of auHTTP component.

5.4.9 OnHostUnreachable

Applies to
auAutoUpgrader component.

Declaration
type
 TauAUHostUnreachableEvent = procedure(Sender: TObject; URL, Hostname:
String) of object;

property OnHostUnreachable: TauAUHostUnreachableEvent;

Description
The OnHostUnreachable event occurs if the AutoUpgrader can not connect to some remote host.
The unreachable host passes in Hostname parameter and full path to inaccessible file in the URL
parameter.

Possible reasons of this problem is:
1. User currently not connected to the Internet;
2. Requested host name is unknown. Please check spelling of domain name in the InfoFileURL

property and in URLs listed in the file which contains upgrade information, or in the Files list of
InfoFile structure;

3. Remote server is down (disconnected from Internet).

 The AutoUpgrader have the standard dialog box, destined to notify user about this event. If you
wish to show this message automatically (in native user's language, specified in Language
property), set mHostUnreachable flag of ShowMessages property to True, or otherwise, set it to
False if don't want to display this message.

Example
Delphi:
procedure TForm1.auAutoUpgrader1HostUnreachable(Sender: TObject;
 URL, Hostname: string);
begin

auAutoUpgrader 35

© 1999-2002, UtilMind Solutions®

 Application.MessageBox(PChar('Host http://' + Hostname + ' is
unreachable.'#13#13'Please check your Internet connection and'#13'try to
upgrade this software again later.'),
 PChar(Application.Title),
 MB_OK or MB_ICONSTOP);
end;

C++ Builder:
void __fastcall TForm1::auAutoUpgrader1HostUnreachable(TObject *Sender,
AnsiString URL, AnsiString Hostname)
{
 AnsiString Msg =
 "Host http://" + Hostname + " is unreachable.\n\n"
 "Please check your Internet connection and\n"
 "try to upgrade this software again later.";
 Application->MessageBox(Msg.c_str(),
 Application->Title.c_str(),
 MB_OK | MB_ICONSTOP);
}

See also
InfoFIleURL and ShowMessages properties;
Files property in the InfoFile structure; Info-file example;
Hostname property of auHTTP component.

5.4.10 OnLaterUpgrade

Applies to
auAutoUpgrader component.

Declaration
property OnLaterUpgrade: TNotifyEvent;

Description
The OnLaterUpgrade event occurs if user press "Later" button in standard dialog box which asks
about upgrade.

 The standard dialog box which asks user about upgrade will be displayed only if mAskUpgrade
flag is enabled in ShowMessages property. (If you don't want to ask about upgrade at all, for
example to start upgrade imediately, just set mAskUpgrade flag to False.)

Screenshot

See also
ShowMessages property.

AutoUpgrader Professional36

© 1999-2002, UtilMind Solutions®

5.4.11 OnLostFile

Applies to
auAutoUpgrader component.

Declaration
var
 TauAULostFileEvent = procedure(Sender: TObject; FileURL: String;
ErrorCode: Integer; var ContinueUpgrade: Boolean) of object;

property OnLostFile: TauAULostFileEvent;

Description
The OnLostFile event occurs if some file, of that which listed in the downloaded Info-file, can not be
downloaded by specified URL (error code has received in the response header from HTTP server).

Most common error reason is HTTP error #404 (document not found), but please check out all
HTTP status codes for more information about HTTP errors.

The AutoUpgrader passes following parameters to the OnLostFile event handler:
Parameter Meaning

 FileURL the Internet address of the file which we just tryed to download;

 ErrorCode integer number which identifies the HTTP error (see the list of

HTTP Status Codes to recognize an error).;

 ContinueUpgrade set this flag variable to True if you wish to skipinaccessible file and still continue

the upgrade.

 The AutoUpgrader have the standard dialog box, destined to notify user about this event. If you
wish to show this message automatically (in native user's language, specified in Language
property), set mLostFile flag of ShowMessages property to True, or otherwise, set it to False if
don't want to display this message automatically.

Example
Delphi:
procedure TForm1.auAutoUpgrader1LostFile(Sender: TObject;
 FileURL: string; ErrorCode: Integer;
 var ContinueUpgrade: Boolean);
begin
 ContinueUpgrade := Application.MessageBox(PChar('File "' + FileURL +
'" not found or inaccessible.'#13#13'Try to skip this file and continue
upgrade?'),
 PChar('Error #' + IntToStr(ErrorCode)),
 MB_YESNO or MB_ICONWARNING) = ID_YES;
end;

C++ Builder:
void __fastcall TForm1::auAutoUpgrader1LostFile(TObject *Sender,
 AnsiString FileURL, int ErrorCode, bool &ContinueUpgrade)
{
 AnsiString Msg =
 "File \'" + FileURL + "\' not found or inaccessible.\n\n"
 "Try to skip this file and continue upgrade?";
 AnsiString Capt =

auAutoUpgrader 37

© 1999-2002, UtilMind Solutions®

 "Error #" + IntToStr(ErrorCode);

 ContinueUpgrade = Application->MessageBox(Msg.c_str(),
 Capt.c_str(), MB_YESNO | MB_ICONWARNING) == ID_YES;
}

See also
ShowMessages property;
Info-file example; HTTP Status Codes.

5.4.12 OnNoInfoFile

Applies to
auAutoUpgrader component.

Declaration
property OnNoInfoFile: TNotifyEvent;

Description
The OnNoInfoFile event occurs if the file which contain the upgrade information was not found in
location specified in the InfoFileURL property.

 The AutoUpgrader have the standard dialog box, destined to notify user about this event. If you
wish to show this message automatically (in native user's language, specified in Language
property), set mNoInfoFile flag of ShowMessages property to True, or otherwise, set it to False if
don't want to display this message.

Remarks

 This event may also occur if you have pointed the InfoFileURL to buggy CGI program, which
execution failed (AutoUpgrader received HTTP error #500 in the header of response from server).

See also
InfoFileURL, ShowMessages and Language properties;
OnNoUpdateAvailable event.

5.4.13 OnNoUpdateAvailable

Applies to
auAutoUpgrader component.

Declaration
property OnNoUpdateAvailable: TNotifyEvent;

Description
The OnNoUpdateAvailable event occurs if no update avaliable for download (newer version not yet
released).

 The OnNoUpdateAvailable occurs if AutoUpgrader successfully downloaded some content from
specified InfoFileURL (remote server returned status code 200 OK) but it appears that no update
available (after comparision of the release date or version number (depending on VersionControl
value) it ensures that current version is latest) or upgrade information was not found among
downloaded data.

 If you wish to automatically display standard message which notify user that "there is no update
available and he actually using most recent version", set mNoUpdateAvailable flag in

AutoUpgrader Professional38

© 1999-2002, UtilMind Solutions®

ShowMessages property to True or, otherwise, set it to False to disable this message box.

See also
InfoFileURL, VersionControl and ShowMessages properties;
Info-file example; OnNoInfoFile event.

5.4.14 OnPasswordRequest

Applies to
auAutoUpgrader and auHTTP components.

Declaration
type
 TauHTTPPasswordRequestEvent = procedure(Sender: TObject;
 var TryAgain: Boolean) of object;

property OnPasswordRequest: TauHTTPPasswordRequestEvent;

Description
The OnPasswordRequest event can be used to implement custom dialog box which asks user for
his username and password to get access to the file which stored in the password protected Web
area.

 Usually you don't need to use this event. For example, your files can be open for everyone, or you
wish to use standard, built-in password-request dialog (see screenshot) which will displayed if
mPasswordRequest flag of ShowMessages property set to True.

However, if you still want to use your own password-request dialog, then set TryAgain parameter to
True to retry the HTTP query (attempt to download the file), and specify correct login information to
the HTTPUsername and HTTPassword properties.

Example
Delphi:
procedure TauAutoUpgrader.AutoUpgrader1PasswordRequest(Sender: TObject;

var TryAgain: Boolean);
begin
 { PassForm is any form with two edit boxes used for entering the login
information (username and password) }
 if PassForm.ShowModal = ID_OK then
 begin
 auAutoUpgrader1.HTTPUsername := PassForm.UsernameEdit.Text;
 auAutoUpgrader1.HTTPPassword := PassForm.PasswordEdit.Text;
 TryAgain := True; // Retry download attempt
 end;
end;

C++ Builder:
void __fastcall TForm1::auAutoUpgrader1PasswordRequest(TObject *Sender,

bool &TryAgain)
{
 if (PassForm->ShowModal() == ID_OK)
 {
 auAutoUpgrader1->HTTPUsername = PassForm->UsernameEdit->Text;
 auAutoUpgrader1->HTTPPassword = PassForm->PasswordEdit->Text;
 TryAgain = True; // Retry HTTP query (download attempt)

auAutoUpgrader 39

© 1999-2002, UtilMind Solutions®

 };
}

See also
HTTPUsername, HTTPPassword and ShowMessages properties;
Password request (screenshot).

5.4.15 OnProgress

Applies to
auAutoUpgrader and auHTTP components.

Declaration
type
 TauAUProgressEvent = procedure(Sender: TObject;

FileURL: String; FileSize, BytesRead, ElapsedTime,
EstimatedTimeLeft: Integer;
PercentsDone, TotalPercentsDone: Byte;
TransferRate: Single) of object;

property OnProgress: TauAUProgressEvent;

Description
The OnProgress event occurs every time when component has successfully downloaded part of
some file which should be updated.

Write the OnProgress event handler to show the download progress and implement your own,
custom progess box instead of standard Application update wizard (then set Enabled property of
Wizard structure to False), or use it as an addition to standard wizard.

There are following parameters which passes to the event handler:
Parameter Meaning

 FileURL location of the file which currently downloading. (This file is one of that that listed
in remote Info-file, from which we have gotten an upgrade information.);

 FileSize total size of file which we currently downloading, in bytes (if possible to
determinate).
Note: usually server does not provide information about content-length for non-
binary data (i.e: for "text/html" or "text/plain" MIME-types);

 BytesRead size of already received data, in bytes;

 ElapsedTime time elapsed from beginning of download (in seconds);

 EstimatedTimeLeft estimated time left before finishing of download (Formula:
X := FileSize / BytesRead * ElapsedTime - ElapsedTime);

 PercentsDone progress for current file in percents (0%..100%);

 TotalPercentsDone progress for whole download queue in percents (0%..100%);

 TransferRate speed of data transfer (in Kb/s).

 The OnProgress event triggered after downloading each block of data with size specified in
TransferBufferSize property.

Example
Delphi:
procedure TForm1.auAutoUpgrader1Progress(Sender: TObject;
 FileURL: string; FileSize, BytesRead, ElapsedTime,
 EstimatedTimeLeft: Integer; PercentsDone,

AutoUpgrader Professional40

© 1999-2002, UtilMind Solutions®

 TotalPercentsDone: Byte; TransferRate: Single);
begin
 // two progress bars
 ProgressCurrentFile.Position := PercentsDone;
 ProgressAllFiles.Position := TotalPercentsDone;

 // file size label (in Kb)
 FileSizeLabel.Caption :=
 Format('File size: %.1f Kb', [FileSize / 1024]);

 // downloaded size label (in Kb)
 DownloadedLabel.Caption :=
 Format('Downloaded: %.1f Kb', [BytesRead / 1024]);

 // transfer rate label (in Kb per second)
 TransRateLabel.Caption :=
 Format('Transfer rate: %.1f Kb/s', [TransferRate]);

 // estimated time left label
 EstTimeLabel.Caption :=
 Format('Estimated time left: %d:%.2d:%.2d',
 [EstimatedTimeLeft div 60 div 60, // hours
 EstimatedTimeLeft div 60 mod 60, // minutes
 EstimatedTimeLeft mod 60 mod 60]); // seconds
end;

C++ Builder:
void __fastcall TForm1::auAutoUpgrader1Progress(TObject *Sender,
 AnsiString FileURL, int FileSize, int BytesRead,
 int ElapsedTime, int EstimatedTimeLeft,
 BYTE PercentsDone, BYTE TotalPercentsDone,
 float TransferRate)
{
 // two progress bars
 ProgressCurrentFile->Position = PercentsDone;
 ProgressAllFiles->Position = TotalPercentsDone;

 // file size label (in Kb)
 FileSizeLabel->Caption = Format("File size: %.1f Kb",
ARRAYOFCONST(((float)FileSize / 1024)));

 // downloaded size label (in Kb)
 DownloadedLabel->Caption = Format("Downloaded: %.1f Kb",
ARRAYOFCONST(((float)BytesRead / 1024)));

 // transfer rate label (in Kb per second)
 TransRateLabel->Caption = Format("Transfer rate: %.1f Kb/s",
ARRAYOFCONST(((float)TransferRate)));

 // estimated time left label
 EstTimeLabel->Caption =
 Format("Estimated time left: %d:%.2d:%.2d",
 ARRAYOFCONST((EstimatedTimeLeft / 60 / 60, // hours
 EstimatedTimeLeft / 60 % 60, // minutes
 EstimatedTimeLeft % 60 % 60)));// seconds

auAutoUpgrader 41

© 1999-2002, UtilMind Solutions®

}

See also
Wizard structure; Info-file example;
OnBeginUpgrade, OnEndUpgrade and OnFileDone events.

5.4.16 OnProxyAuthenticationRequest

Applies to
auHTTP and auAutoUpgrader components.

Declaration
type
 TauHTTPProxyAuthenticationRequestEvent = procedure(Sender: TObject;
 var ProxyUsername, ProxyPassword: String;
 var TryAgain: Boolean) of object;

property OnProxyAuthenticationRequest:
TauHTTPProxyAuthenticationRequestEvent;

Description
The OnProxyAuthenticationRequest event should be used to prompt users for their
username/password to access the Web via secure proxy server which requires authentication.

Write this event to prompt and specify the ProxyUsername and ProxyPassword parameters,
required for the proxy authentication, and set TryAgain parameter to True, to retry the HTTP query
with provided login information.

 Alternatively you can specify ProxyUsername and ProxyPassword properties in the Proxy
structure, before the request. In case if specified username and password is okay, the
OnProxyAuthenticationRequest event will not occur.

Notes

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

 If you leave this event unhandled (if you set TryAgain parameter to False), the component will
generate error code #407 (Proxy Authentication Required).

See also
Proxy and InternetOptions properties;
HTTP Status Codes.

5.5 Upgrade Information File

What is the information file (InfoFile) and what for we need it?
This file contains the information about latest version of your application. This is the server-side part
of AutoUpgrader component, small text-file, stored on your website, and InfoFileURL property must
point to its location.

On detecting the Internet connection (if AutoCheck = True), or after calling the CheckUpdate
method, the AutoUpgrader downloads this file from your website to check for an application
updates.

AutoUpgrader Professional42

© 1999-2002, UtilMind Solutions®

If VersionControl property is byDate — it compares the date specified in VersionDate property with
the date of latest version, specified in #date variable of the .Info-file (see example of real file below).
If value of #date variable higher than date specified in VersionDate property, then AutoUpgrader
will show the dialog which notify user that newer version already available and whether he(she)
would like to upgrade the software (see screenshot).

The optional text for this dialog box (release notes, new features etc) specified in #message variable
(see example below). #message is not obligatory parameter, feel free to leave it empty.

If user press "Yes" button, then AutoUpgrader will attempt to download the updated files from
locations specified in #urlX variables, for further updating of these files locally. However there is two
alternative options: 1) if you wish to download just setup-file for further manual installation — set
#method value to 1 or, 2) if you wish to just redirect user to download site — set #method to 2 and
the AutoUpgrader will just redirect user to first listed #url (see UpgradeMethod property for more
details).

In case if you are using VersionNumber for version control, then before upgrading, the
AutoUpgrader will compare value in #version variable with value specified in VersionNumber
property. If values is equal then AutoUpgrader will try to auto-upgrade software same way.

Example of information file
--- Begin
#date=09/19/2001
#version=2.0.1b
#message={Version 2.0 contains following features:
 * Feature 1
 * Feature 2
 * Feature 3
and so on...}
#url1=http://www.yourdomain.com/download/cool/CoolProgram.exe
#method=0 (self-upgrade)
--- End

Info-file Format
#date=MM/DD/YYYY
#version=any string

#url1=http://www.mydomain.com/download/MyApp.exe
#url2=http://www.mydomain.com/download/MyApp.dll
...
#urlN=http://www.mydomain.com/download/ReleaseNotes.txt

#method=0, 1 or 2 (see UpgradeMethod property)

(#message begins with "{" and ends with "}" characters)
#message={long message
another line
line 3}

How to create Info-files?
Double-click the component icon on your form, or…
Right-click the icon and select "Edit Info-file…" menu item", or…
Click "…" button on InfoFile property in Object Inspector, or…
Open "NotePad" or any other text-editor and create this file manually<g>.

Some real Info-files on our website

auAutoUpgrader 43

© 1999-2002, UtilMind Solutions®

http://www.appcontrols.com/download/exe/AutoUpgraderPro.inf
http://www.appcontrols.com/software/upgrades/colorpicker.inf
http://www.appcontrols.com/software/upgrades/startupman.inf
http://www.appcontrols.com/software/upgrades/virtualdrives.inf
http://www.appcontrols.com/software/upgrades/wallpaperman.inf

5.6 Self-upgrading mechanism

Self-upgrading mechanism, how does it works?
When the AutoUpgrader downloads required files from the Web it stores them to the working
directory with "*.*.uTMP" extensions. It also set for them "temporary" and "hidden" attributes, so
user will not see these files.

After successful downloading, the AutoUpgrader extracts so-called self-upgrading module
(Upgrader3.exe, 9KB), which performs local updates to the TEMP directory, execute it then
terminate the main app itself. The self-upgrading mechanism replaces all files with newer ones and
restart the main application.

The self-upgrading module (Upgrader3.exe) performs the local updates with following steps:
 1. Locate program directory by exe-name transmitted as command-line parameter
 1.1. Check whether the AutoUpgrader uses the external setup program (#method=1)
 1.2. Split the file name and parameters
 1.3. Split the file name and path
 2. Test whether an exe-file exists + get the filename with correct charcase
 3. Awaiting for termination of the main program
 4. Test whether newer (downloaded) exe-file exists
 5. Find all downloaded (.uTMP) files
 5.1. If this is executable AND newest exe still not found -- trying to
 use another suitable EXE. (This may happends if program was renamed
 by user, or local update should be done by external setup.)
 5.2. Rename .uTMP file to its normal name
 6. Re-execute main program (or setup file).
New steps, added in v3.1.1:
 7. IF the local update should be done by external setup THEN (else terminate)
 7.1. Wait until termination of setup program
 7.2. Delete the setup (we don't need it anymore after installation?)
 7.3. Restart the original main app

Note

 If you wish to use AutoUpgrader for downloading just single setup-file which will perform all
further updates — make sure that UpgradeMethod = umUseExternalSetup (#method=1 in the
Info-file). Otherwise the self-upgrading module will replace your program with downloaded setup.

5.7 Calculation of upgrades

Would like to calculate the number of upgrades? Then point the InfoFileURL property to the CGI
script which will calculate the program upgrades, instead of real Info-file.

Here is an example of such CGI script, in Perl. If you would like to use it — just cut and paste this
script from here, or download it from http://www.appcontrols.com/misc/autoupgrade-cgi.zip

#!/usr/bin/perl
##
Auto-Upgrade counter script Version 1.0
(c) 2000 UtilMind Solutions info@utilmind.com
http://www.utilmind.com
Created Jan 18, 1999 Last Modified Jan 18, 1999
##
COPYRIGHT NOTICE
Copyright (c) 1999 by UtilMind Solutions. All Rights Reserved.

http://www.appcontrols.com/download/exe/AutoUpgraderProDemo.inf
http://www.appcontrols.com/software/upgrades/colorpicker.inf
http://www.appcontrols.com/software/upgrades/startupman.inf
http://www.appcontrols.com/software/upgrades/virtualdrives.inf
http://www.appcontrols.com/software/upgrades/wallpaperman.inf
http://www.appcontrols.com/misc/autoupgrade-cgi.zip

AutoUpgrader Professional44

© 1999-2002, UtilMind Solutions®

#
This program distributed as server side part of AutoUpgrader component.
##
INSTALLATION TIPS
Put this script to your CGI-BIN directory and chmod it to 755 (executable)
Create flat database file (users_served.txt) and chmod it to
666 (read-write permission) and install it to CGI-BIN too (see $database
variable)
##

####################
Configuration

$database = "users_served.txt"; # You may set any other name to this flat database

$info_file = "../autoupgrade.inf"; # !IMPORTANT: This is local path to REAL .Info-file

$use_flock = 1; # 1 - yes, 0 - no. Should be used but won't work Win95/98

####################
Executable

print "Content-Type: text/html\n\n";

open(FILE, $database) || &error("Can't locate database file");
$count = <FILE>;
close(FILE);

$count++; # increasing the counter

open(FILE, ">$database") || &error("Can't update database file");
if ($use_flock eq 1) {
 flock(FILE, 2); # locking write accessing
}
print FILE $count;
if ($use_flock eq 1) {
 flock(FILE, 8); # unlocking
}
close(FILE);

open(FILE, "$info_file") || &error("Can't locate info-file");
@DATA = <FILE>;
close(FILE);

print @DATA;
print "#served=$count\n";

sub error {
 print "Error: $_[0]
\n";
 print "Reason: $!";
 exit;
}

5.8 Screenshots

5.8.1 Application update wizard

Screenshot #1
"Application update wizard" dialog

auAutoUpgrader 45

© 1999-2002, UtilMind Solutions®

5.8.2 Multi-language support

Screenshot #2
"Application update wizard" in German

…and in Russian

AutoUpgrader Professional46

© 1999-2002, UtilMind Solutions®

BTW, all other messages (not only in Wizard) will be translated as well.

5.8.3 Access to protected area

Screenshot #3
AutoUpgrader will ask user his username and password on necessity to download files from
password protected Web directory.

5.8.4 Info-file designer

Screenshot #4
Built-in Info-file designer will help you to create files with upgrade information.

auAutoUpgrader 47

© 1999-2002, UtilMind Solutions®

Upgrade request message. Custom text marked red:

6 auHTTP

6.1 TauHTTP

Overview
The auHTTP component is extremely easy to use WinInet-based HTTP client component which
allows to post and get any data from the Web via HTTP protocol. With auHTTP you can grab Web
pages, download files and documents (or only their headers without the content), get results of the
CGI programs (for example, results of web-based search engines / databases), or even upload files
to the Web-based programs.

The auHTTP can grab web contents both in binary and text formats, supports cache of Internet
Explorer, can pause and resume broken downloads, read data from password protected directories
and automatically supports several proxy authentication schemes (basic, digest, NTLM etc).

AutoUpgrader Professional48

© 1999-2002, UtilMind Solutions®

 Key features

· works with both, HTTP and HTTPS protocols + can read files from local area network using "file://"
prefix for URLs;

· can either POST or GET data to remote CGI programs;
· can upload files by HTTP protocol, using multipart/form-data POST method, introduced in

RFC 1867;
· can download or upload data to password protected Web directories;
· flexible cache control, provided by WinINet library. The auHTTP just use standard cache of

Internet Explorer to retreive or write downloaded files to cache and save bandwidth from re-
downloading. The cache control can be is easily customized by various options;

· can pause and resume broken downloads;
· automatically accepts SSL certificates, can allow or disallow access to sites with invalid or expired

certificates;

· can automatically retreive proxy information from Internet Options of Control Panel, make HTTP
requests with custom proxy settins or directly without any proxy server;

· automatically supports several secure proxy authentication schemes: basic, digest, NTLM (NT
Lan Manager), MSN (Microsoft Network), DPA (Distributed Password Authentication) and RPA
(Remote Passphrase Authentication by CompuServe)

· using super stable threading mechanism, which allows to execute HTTP requests from both,
standard, and ActiveX forms.

How to use ?
Just specify the location of Internet document which you would like to receive to URL property, and
call Read method to start downloading. Use OnDone event to handle received data, or use
OnHTTPError, OnConnLost and OnHostUnreachable events to handle errors. To show the
download progress, write OnProgress event handler.

If you need to send some data to the CGI program via POST method, specify the request in the
POSTData property before Reading. Usually auHTTP component can automatically recognize which
request method you would like to use, POST or GET, however if you wish you can specify it in the
RequestMethod property.

If you want to just check the HTTP headers of remote document without downloading it (or before
downloading) — write the OnHeaderInfo event handler to receive all the headers (document size,
content type, language, encoding, last modification and expiration date and so forth). You can also
use this event to check the file information and decide whether you really want to download it…

To read files from password protected Web directories you should specify login information in
Username and Password properties. Also use OnPasswordRequest event to specify login
information dynamically.

 auHTTP can upload files via HTTP protocol, using multipart/form-data POST method, introduced
in RFC 1867. Uploading still easy to use as well as downloading. For more details see Upload
method and OnUploadFieldRequest, OnUploadProgress events.

 auHTTP automatically recognize and supports several Proxy authentication schemes (basic,
digest, NTLM (NT Lan Manager), MSN (Microsoft Network), DPA (Distributed Password
Authentication) and RPA (Remote Passphrase Authentication by CompuServe)). If user works
through secure proxy server which requires user authentication — specify ProxyUsername and
ProxyPassword properties to the Proxy structure, or write OnProxyAuthenticationRequest event
handler to prompt users for the username and password required to access the Web via proxy
server.

If you need to terminate downloading process imediately — call Abort method. In case if you

http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc821.html

auHTTP 49

© 1999-2002, UtilMind Solutions®

downloading some binary data to file (specified in OutputFileName property), you can resume the
downloading at any time using Resume method.

 The acHTTP automatically uses simple but smart scheme of checking whether the file which
you're trying to Resume has been updated or modified. Before downloading of the data which
should be appended, it downloads small data chunk (with size specified in TransferBufferSize
property), before the break, and compares with the same data chunk at the end of file.

In case if compared data are equal — it continue downloading and append downloaded data to the
end of local file. Otherwise it assume that file which beging downloaded has been changed, and
starts download from beginning.

By default TransferBufferSize = 4Kb, so every time when you call Resume method, the component
download 4Kb of extra "rollback" data to check file consistancy.

 Also, the auHTTP unit provides another, extremally simpe way to receive some text information
from the Web, using HTTPReadString function, without any auHTTP component on the form and
without specifying its properties and handling the events. The HTTPReadString can be used to
download some text string or HTML document from specified location.

Usage example
In Delphi: http://www.appcontrols.com/demos/httpdemo-delphi.zip
In C++ Builder: http://www.appcontrols.com/demos/httpdemo-bcb.zip
Compiled executable: http://www.appcontrols.com/demos/exe/HTTPDemo.exe

Important note!

 C++ Builder programmers: Don't forget to add "INET.LIB" file (or "WININET.LIB" in C++ Builder
6 and higher, this file can be found in "..\CBuilderX\Lib" directory) to your project which uses the
auHTTP. The INET.LIB contains the prototypes for required Internet routines from WinInet.DLL.

See also
auThread and auAutoUpgrader components.

6.2 Properties

6.2.1 AcceptTypes

Applies to
auHTTP component.

Declaration
property AcceptTypes: String; // default is "*/*"

Description
The AcceptTypes property specifies the array of media types (also known as Multipurpose Internet
Mail Extension (MIME) type) which you would like to receive from the Web using the auHTTP
component (HTTP client). These strings indicates content types accepted by the client. If
AcceptTypes is empty, no types are accepted by the client.

 For example, if you would like to get HTML files only, set AcceptTypes property to "text/html". To
receive flat-text files only, set AccessTypes to "text/plain".

Servers interpret a lack of accept types to indicate that the client accepts only documents of type
"text/*" (that is, only text documents, and not pictures or other binary files.

To specify multiple MIME types, sepearate them by comma sign "," (ie: "image/gif, image/x-xbitmap,

http://www.appcontrols.com/demos/httpdemo-delphi.zip
http://www.appcontrols.com/demos/httpdemo-bcb.zip
http://www.appcontrols.com/demos/exe/HTTPDemo.exe

AutoUpgrader Professional50

© 1999-2002, UtilMind Solutions®

image/jpeg, image/pjpeg, application/vnd.ms-excel, application/msword, */*").

 Some servers always checking the media types accepted by client to determinate the data format
prefered by client. For example, lately some servers can returns human readable data both in HTML
and WML formats. HTML used for output to standard Web-browsers and WML for output to celluar
phones, handheld computers and other WAP devices. To determinate the client type, server uses
the HTTP_ACCEPT environment of client:
if ($ENV{'HTTP_ACCEPT'} =~ /wml/) {
 print "Location: http://website.com/wap/index.wml\n\n";
}else {
 print "Location: http://website.com/index.html\n\n";

When server founds "WML" word between the accepted types, it will redirect the client to certain
WAP page. As you can see, sometimes the HTTP output depend on accepted media types.

For more details on Accept header please see the reference at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1

Remark

 Some servers does not check accepting types at all and can return files with ANY media type.

See also
AddHeaders, Agent, URL and Referer properties.

6.2.2 AddHeaders

Applies to
auHTTP component.

Declaration
property AddHeaders: TStringList;

Description
The AddHeaders property specifies any additional HTTP headers that should pass to the server.
You can specify ANY optional headers that may be required by server to process request.

For example, if server can return preferable content taking in account the language that user can
read:
AddHeadeers.Clear;
{ Assume that user user can read Russian, English, German and French
content (sorted by priority). }
AddHeaders.Add('ACCEPT_LANGUAGE: ru,en,de,fr');

 List of widely used HTTP headers (* sample values marked red):
ACCEPT_CHARSET: iso-8859-1,*,utf-8
ACCEPT_ENCODING: gzip, deflate
ACCEPT_LANGUAGE: en-us,es
CONNECTION: Keep-Alive
FROM: someone@somewhere.com
IF_MODIFIED_SINCE: Tue, 06 Feb 2001 18:30:50 GMT
RANGE: bytes=0-255

…see also quick reference to HTTP headers at http://www.cs.tut.fi/~jkorpela/http.html, or full
reference at http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

 If you would like to test the HTTP headers specified in your HTTP client on real server, you can
read content from following URL:http://www.appcontrols.com/cgi/test/http_headers.cgi

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
http://www.cs.tut.fi/~jkorpela/http.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.appcontrols.com/cgi/test/http_headers.cgi

auHTTP 51

© 1999-2002, UtilMind Solutions®

See also
AcceptTypes, Agent properties.

6.2.3 Agent

Applies to
auHTTP component.

Declaration
property Agent: String;

Description
The Agent property specifies the name of HTTP client. The "user agent" can be name of your
program or program version.

For example, user agent of MS Internet Explorer 5.01 which installed to Windows 98 is
Mozilla/4.0 (compatible; MSIE 5.01; Windows 98).

See also
AcceptTypes and AddHeaders properties.

6.2.4 Busy

Applies to
auHTTP component.

Declaration
property Busy: Boolean; // Read-only !!

Description
The Busy property determines whether the HTTP component (its thread) is busy on some
operations. When Busy property is True, the HTTP currently downloading data from the Web.

Note

 You can NOT download any data when the HTTP component is busy, and must wait until
component done all operations. The Read method will return False when the component is busy.

See also
Read method and OnDone event;
Running property of auThread component.

6.2.5 CacheOptions

Applies to
auHTTP and auAutoUpgrader components.

Declaration
type
 TauCacheOption = (coAlwaysReload, coReloadIfNoExpireInformation,
 coReloadUpdatedObjects, coPragmaNoCache,
 coNoCacheWrite, coCreateTempFilesIfCantCache,
 coUseCacheIfNetFail);
 TauCacheOptions = set of TauCacheOption;

property CacheOptions: TauCacheOptions;

AutoUpgrader Professional52

© 1999-2002, UtilMind Solutions®

Description
The CacheOptions property controls the cache options for the auHTTP component and determines
how the component should use standard Internet Explorer's cache.

The cache control has following options:
Value Meaning

 coAlwaysReload Forces a download of the requested file, object, or directory listing
from the origin server, not from the cache.;

 coReloadIfNoExpireInformation Forces a reload if there was no Expires time and no LastModified
time returned from the server when determining whether to reload
the item from the network.;

 coReloadUpdatedObjects Reloads HTTP resources if the resource has been modified since
the last time it was downloaded;

 coPragmaNoCache Forces the request to be resolved by the origin server, even if a
cached copy exists on the proxy;

 coNoCacheWrite Does not add the downloaded entity to the cache;

 coCreateTempFilesIfCantCache Causes a temporary file to be created if the file cannot be cached.

 Note: since secure pages won't be cached, this option is
always False when downloading document by HTTPS protocol;;

 coUseCacheIfNetFail Returns the resource from the cache if the network request for

the resource fails due if connection with the server has been
reset, or the attempt to connect to the server failed.

See also
InternetOptions property;
Read method; OnHeaderInfo event.

6.2.6 FileName

Applies to
auHTTP component.

Declaration
property FileName: Boolean; // Read-only !!

Description
The FileName is optional and read-only property used to exctract the file name from the HTTP
address specified in the URL property.

 If you would like to specify the target file for downloaded data — use OutputFileName property.

Example
auHTTP1.URL := 'http://www.abc.com/download/filename.zip';
Result := auHTTP1.FileName;
// Result will be 'filename.zip';

See also
URL, HostName and OutputFileName properties.

6.2.7 HideOutputFile

Applies to
auHTTP component.

auHTTP 53

© 1999-2002, UtilMind Solutions®

Declaration
property HideOutputFile: Boolean;

Description
The HideOutputFile property determines whether the file (specified in OutputFileName property),
which created to store the data of downloaded document, should be hidden in file system (should
have "hidden" and "temporary" file attributes set).

Use the HideOutputFile property together with OutputFileName, if you don't want to use memory
streams for downloaded files, and don't want to show downloaded files in the file system.

 Anyway, you will be able to rename the downloaded file and change its file attributes (using
SetFileAttributes WinAPI), in the OnDone event handler.

Example
auHTTP1.URL := 'http://www.domain.com/filename.zip';
auHTTP1.OutputFileName := 'c:\filename.zip';
auHTTP1.HideOutputFile := True;
auHTTP.Read;

// and when file will be successfully downloaded you can
// change the file attributes to Normal in the OnDone event handler
procedure TForm1.auHTTP1Done(Sender: TObject; const ContentType: string;
 FileSize: Integer; Stream: TStream);
begin
 // set file attributes to normal
 Windows.SetFileAttributes(PChar(FileSize), FILE_ATTRIBUTE_NORMAL);
end;

See also
OutputFileName property;
OnDone event and Read method.

6.2.8 HostName

Applies to
auHTTP component.

Declaration
property HostName: Boolean; // Read-only !!

Description
The HostName is optional and read-only property used to exctract the host name from the HTTP
address specified in the URL property.

Example
auHTTP1.URL := 'http://www.abc.com/download/filename.zip';
Result := auHTTP1.HostName;
// Result will be 'www.abc.com';

See also
URL and FileName properties.

AutoUpgrader Professional54

© 1999-2002, UtilMind Solutions®

6.2.9 InternetOptions

Applies to
auHTTP and auAutoUpgrader components.

Declaration
type
 TauInternetOption = (ioIgnoreCertificateInvalid,
ioIgnoreCertificateDateInvalid,
 ioIgnoreUnknownCertificateAuthority,
 ioIgnoreRedirectToHTTP, ioIgnoreRedirectToHTTPS,
 ioKeepConnection, ioNoAuthentication,
 ioNoAutoRedirect, ioNoCookies);
 TauInternetOptions := set of TauInternetOption;

property InternetOptions: TauInternetOptions;

Description
The InternetOptions property is the set of options used to specify some behaviors of auHTTP
component.

The property is set of following options:
Value Meaning

 ioIgnoreCertificateInvalid Disables checking of SSL/PCT-based certificates that are
returned from the server against the host name given in the
request. WinINet functions use a simple check against
certificates by comparing for matching host names and simple
wildcarding rules;

 ioIgnoreCertificateDateInvalid Disables checking of SSL/PCT-based certificates for proper

validity dates;

 ioIgnoreUnknownCertificateAuthoritySpecifies whether the component should ignore unknown

certificate authority problems, if the server's SSL certificate has
been "signed", but by unknown or untrusted authority;

 ioIgnoreRedirectToHTTP Disables detection of this special type of redirect. When this
flag is used, WinINet functions transparently allow redirects
from HTTPS to HTTP URLs;

 ioIgnoreRedirectToHTTPS Disables detection of this special type of redirect. When this
flag is used, WinINet functions transparently allow redirects
from HTTP to HTTPS URLs;

 ioKeepConnection Uses keep-alive semantics, if available, for the connection.
This flag is required for Microsoft Network (MSN), NT LAN
Manager (NTLM), and other types of authentication;

 ioNoAuthentication Does not attempt authentication automatically;

 ioNoAutoRedirect Does not automatically handle redirection;

 ioNoCookies Does not automatically add cookie headers to requests, and
does not automatically add returned cookies to the cookie
database.

See also
CacheOptions property;
Read method;
OnHeaderInfo, OnRedirected and OnProxyAuthenticationRequest events.

auHTTP 55

© 1999-2002, UtilMind Solutions®

6.2.10 OutputFileAttributes

Applies to
auHTTP component.

Declaration
type
 TauFileAttribute = (atrArchive, atrHidden, atrReadOnly, atrSystem,
atrTemporary, atrOffline);
 TauFileAttributes = set of TauFileAttribute;

 TauOutputFileAttributes = class
 published
 property Complete: TauFileAttributes default [atrArchive];
 property Incomplete: TauFileAttributes default [atrArchive,
atrTemporary];
 end;

property OutputFileAttributes: TauOutputFileAttributes;

Description
The OutputFileAttributes property allows to specify the file attributes for file which being downloaded
to location specified in OutputFileName property.

There is 2 "sub-properties": Complete and Incomplete.

Incomplete property specifies flags for incomplete file which still being downloaded (or paused,
but still not downloaded to local drive completely).

Complete specifies attributes which being set to the OutputFileName once the download finished
and file completely downloaded.

 You can use this property to make difference between complete and incomplete files for other
application, or to quickly determinate whether local file has been completely downloaded.

Also, anyway you will be able to rename the downloaded file and change its file attributes (using
SetFileAttributes WinAPI), in the OnDone event handler.

Note

 atrTemporary and atrOffline options has no effect in Win95/98/ME. These options are
only for NT-family systems. You can set it but they will work only in NT/XP etc.

Example
auHTTP1.URL := 'http://www.domain.com/filename.zip';
auHTTP1.OutputFileName := 'c:\filename.zip';
auHTTP1.OutputFileAttributes.Complete := [atrArchive]; // Normal
auHTTP1.OutputFileAttributes.Incomplete := [atrArchive, atrHidden]; //
"hide" incomplete file
auHTTP1.Read;

// and when file will be successfully downloaded you can
// change the file attributes to Normal in the OnDone event handler
procedure TForm1.auHTTP1Done(Sender: TObject; const ContentType: string;
 FileSize: Integer; Stream: TStream);
begin
 // set file attributes to normal
 Windows.SetFileAttributes(PChar(FileSize), FILE_ATTRIBUTE_NORMAL);

AutoUpgrader Professional56

© 1999-2002, UtilMind Solutions®

end;

See also
OutputFileName property;
Read, ReadRange, Resume and Pause methods;
OnOutputFileError and OnDone events.

6.2.11 OutputFileName

Applies to
auHTTP component.

Declaration
property OutputFileName: String;

Description
The OutputFileName property specifies the target filename for downloaded resource. If the
OutputFileName specified, the auHTTP uses the TFileStream instead of TMemoryStream as the
storage for downloaded data.

 Use the OutputFileName to specify the target filename if you need save data to the file AND if you
don't want to use memory-stream of OnDone event.

If you would like to hide the temporary (incomplete) file while it downloading — set
OutputFileAttributes.Incomplete property to [atrHidden].

In case if the OutputFileName can not be created (e.g. path not exists, or file locked by system etc)
— OnOutputFileError event occur.

Note

 The downloaded document will not be stored to the "OutputFileName", in case if component
received erroneous status response code (not 200 - OK and not 206 - Partial Content (if request
was initiated by Resume or ReadRange methods)).

In case of HTTP error, the downloaded content will be represented as TMemoryStream in various
events of auHTTP.

Example
auHTTP1.URL := 'http://www.domain.com/filename.zip';
auHTTP1.OutputFileName := 'c:\filename.zip';
auHTTP.Read;

See also
OutputFileAttributes property;
Read, ReadRange and Resume methods;
OnDone, OnHTTPError and OnOutputFileError events;
HTTP Status Codes.

6.2.12 Password

Applies to
auHTTP component.

Declaration
property Password: String;

auHTTP 57

© 1999-2002, UtilMind Solutions®

Description
The Password property specifies the password to access the data in password protected Web
directories. You don't need to specify the password if you reading non-protected data.

 You can also specify the login information dynamically, when it necessary, in the
OnPasswordRequest event handler.

See also
Username property and OnPasswordRequest event.

6.2.13 POSTData

Applies to
auHTTP component.

Declaration
property POSTData: String;

Description
The POSTData property specifies any optional data to send with the HTTP request. The optional
data can be the resource or information being posted to the server. The POSTData property is
generally used to POST some data to the CGI programs.

Example: (requesting data from the CGI script (at Torry.net) via POST method)
procedure TForm1.ReadBtnClick(Sender: TObject);
begin
 auHTTP1.URL := 'http://www.torry.net/quicksearch.php';
 auHTTP1.POSTData := 'String=HTTP&Exact=Yes&Title=No';
 auHTTP1.Read;
end;

procedure TForm1.auHTTP1Done(Sender: TObject; ContentType: string;
FileSize: Integer; Stream: TStream);
begin
 // Receiving content from Stream
end;

 Remarks
1.When you trying to POST data to the CGI program specifying the POSTData property, make sure

that RequestMethod has set to rmAutoDetect or rmPOST;

2.The auHTTP component unable to post data to the CGI program when user working offline (even

if user connected to the Internet). In this case, when you call the Read method, the
OnHostUnreachable event occurs. Posting to the CGI programs requires active Internet
connection.

See also
RequestMethod property and Read method.

6.2.14 Proxy

Applies to
auHTTP and auAutoUpgrader components.

Declaration
type

AutoUpgrader Professional58

© 1999-2002, UtilMind Solutions®

 TauHTTPAccessType = (atPreconfig, atDirect, atUseProxy);
 TauHTTPProxy = class
 published
 property AccessType: TauHTTPAccessType; // atPreconfig by default
 property ProxyServer: String;
 property ProxyPort: Integer; // 8080 by default
 property ProxyBypass: TStrings; // 127.0.0.1 by default
 property ProxyUsername: String;
 property ProxyPassword: String;
 end;

property Proxy: TauHTTPProxy;

Description
The Proxy structure controls the connection type for the auHTTP component and settings for
estabilishing connection via proxy. Connection type (AccessType) can be "pre-configured" (auHTTP
will use settings from Control Panel), direct, or via specified proxy server.

If proxy requires authentication — write OnProxyAutenticationRequest event handler to prompt and
specify user's login information.

See also
OnProxyAuthenticationRequest event.

6.2.14.1 AccessType

Applies to
auHTTP and auAutoUpgrader components as subproperty of Proxy structure.

Declaration
type
 TauHTTPAccessType = (atPreconfig, atDirect, atProxy);

property AccessType: TauHTTPAccessType;

Description
The AccessType property controls how the auHTTP component should access the remote server to
download data. The AccessType can be direct or via the proxy server. If you'd like to use the access
type previously configured in the Control Panel — leave the AccessType = atPreconfig.

Values Meaning

 atPreconfig retrieves the proxy or direct configuration from the registry (user can configure the
access type in the Control Panel);

 atDirect uses the direct connection and resolves all host names locally;

 atProxy access the remote data via the proxy server. Passes all requests to the proxy, unless

a proxy bypass list is not empty and the name to be resolved bypasses the proxy. To
specify the proxy server and port — use ProxyServer and ProxyPort properties. To
configure bypass list — use ProxyBypass property.

See also
ProxyServer, ProxyPort and ProxyBypass properties.

6.2.14.2 ProxyBypass

Applies to
auHTTP and auAutoUpgrader components as subproperty of Proxy structure.

auHTTP 59

© 1999-2002, UtilMind Solutions®

Declaration
property ProxyBypass: String;

Description
The ProxyBypass contains the list of host names or IP addresses, or both, that should not be routed
through the proxy. The list can contain wildcards. If the ProxyBypass is empty, the auHTTP reads
the bypass list from the registry.

 You can use wild cards to match domain and host names or addresses — for example,
www.*.com;128.*;240.*;*.mygroup.*;*x* and so on. Use semicolon (;) to separate entries.

See also
ProxyServer and ProxyPort properties.

6.2.14.3 ProxyPassword

Applies to
auHTTP and auAutoUpgrader components as subproperty of Proxy structure.

Declaration
property ProxyPassword: String;

Description
The ProxyPassword property specifies the password required for connection via proxy server, if it's
require secure authentication.

 Alternativaly you can write OnProxyAuthenticationRequest event handler and specify proxy
username and password dynamically.

Note

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

See also
ProxyUsername and InternetOptions properties;
OnProxyAuthenticationRequest event.

6.2.14.4 ProxyPort

Applies to
auHTTP and auAutoUpgrader components as subproperty of Proxy structure.

Declaration
property ProxyPort: Integer;

Description
The ProxyPort property specifies the port number for the proxy server. The default value for proxy
ports is 8080.

See also
ProxyServer and ProxyBypass properties.

AutoUpgrader Professional60

© 1999-2002, UtilMind Solutions®

6.2.14.5 ProxyServer

Applies to
auHTTP and auAutoUpgrader components as subproperty of Proxy structure.

Declaration
property ProxyServer: String;

Description
The ProxyServer property specifies the host name of the proxy server to use if the proxy access was
specified in the AccessType property.

See also
ProxyPort and ProxyBypass properties.

6.2.14.6 ProxyUsername

Applies to
auHTTP and auAutoUpgrader components as subproperty of Proxy structure.

Declaration
property ProxyUsername: String;

Description
The ProxyUsername property specifies the username required for connection via proxy server, if it's
require secure authentication.

 Alternativaly you can write OnProxyAuthenticationRequest event handler and specify proxy
username and password dynamically.

Note

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

See also
ProxyPassword and InternetOptions properties;
OnProxyAuthenticationRequest event.

6.2.15 Range

Applies to
auHTTP component.

Declaration
type
 TauHTTPRange = class(TPersistent)
 published
 property StartRange: Integer;
 property EndRange: Integer;
 end;

Description
The Range structure specifies a range of binary data for partial download. Set content ranges if you
would like to download you would like to download just some defined part of the file.

auHTTP 61

© 1999-2002, UtilMind Solutions®

For example, you would like to download the part of file, 40 bytes beginning from 50th byte. Then
just set StartRange to 50 and EndRange to 90.

Or, for another instance, you would like to resume broken download and read the file beginning from
1234 bytes till the end of file. Set StartRange to 1234 and EndRange to 0 (unlimited range).

Remark
The Range works for binary files only. For dynamic ASCII content (i.e: HTML, output of CGI scripts
etc) it will download entire file anyway.

See also
AddHeaders property.

6.2.15.1 EndRange

Applies to
auHTTP component as subproperty of Range structure.

Declaration
property EndRange: Integer;

Description
The EndRange property allows to specify the ending position (in bytes) of file for partial download.
Set the EndRange to 0 if you would like to download data till the end of file.

See also
StartRange property.

6.2.15.2 StartRange

Applies to
auHTTP component as subproperty of Range structure.

Declaration
property StartRange: Integer; //

Description
The StartRange property specifies the starting position (in bytes) of the block of data to download.

For example, if StartRange = 50 and EndRange = 0, the auHTTP will download the file beginning
from 50th byte till the end of file. If StartRange = 50 and EndRange = 89, it downloads 40 bytes
from 50th till 89th byte.

If StartRange = 0, the auHTTP will read data from beginning of file.

See also
EndRange property.

6.2.16 Referer

Applies to
auHTTP component.

Declaration
property Referer: String;

AutoUpgrader Professional62

© 1999-2002, UtilMind Solutions®

Description
The Referer property specifies the location of the document from which the URL in the request was
obtained. If this parameter is empty, no "referrer" is specified.

See also
URL property.

6.2.17 RequestMethod

Applies to
auHTTP component.

Declaration
type
 TauHTTPRequestMethod = (rmAutoDetect, rmGET, rmPOST);

property RequestMethod: TauHTTPRequestMethod;

Description
The RequestMethod (HTTP method) property is instruction sent in a request message that notifies
an HTTP server of the action to perform on the specified resource.

For example, rmGET specifies that a resource is being retrieved from the server. rmPOST specifies
that client should upload (post) some specific information which should processed by server before
downloading the data.

When RequestMethod is rmAutoDetect, the HTTP component will autimatically detect how to
request data from server. When POSTData string is empty, component will use GET method. If
POSTData specified, POST method will be used.

 When you reading data from CGI script using GET method, you should specify reqired
information behind question mark, i.e.: http://www.website.com/cgi-
bin/script.cgi?datafield1=datavalue2&datafield2=datavalue2

If CGI program accepts data via POST method, you should specify required data in the POSTData
property together with the URL string.

Example 1: (requesting data from the CGI script (at DelphiPages.com) via GET method)
procedure TForm1.ReadBtnClick(Sender: TObject);
begin
 auHTTP1.URL :=
'http://www.delphipages.com/result.cfm?SR=HTTP&AO=and&RequestTimeout=500
';
 auHTTP1.Read;
end;

procedure TForm1.auHTTP1Done(Sender: TObject; ContentType: string;
FileSize: Integer; Stream: TStream);
begin
 // Receiving content from Stream
end;

{ Click link below to see demo:

auHTTP 63

© 1999-2002, UtilMind Solutions®

http://www.delphipages.com/result.cfm?SR=HTTP&AO=and&RequestTimeout=500 }

Example 2: (requesting data from the CGI script (at Torry.net) via POST method)
procedure TForm1.ReadBtnClick(Sender: TObject);
begin
 auHTTP1.URL := 'http://www.torry.net/quicksearch.php';
 auHTTP1.POSTData := 'String=HTTP&Exact=Yes&Title=No';
 auHTTP1.Read;
end;

procedure TForm1.auHTTP1Done(Sender: TObject; ContentType: string;
FileSize: Integer; Stream: TStream);
begin
 // Receiving content from Stream
end;

See also
URL property.

6.2.18 ShowGoOfflineMessage

Applies to
auHTTP component.

Declaration
property ShowGoOnlineMessage: Boolean;

Description
The ShowGoOnlineMessage property controls whether the component could display standard
Internet Explorer's dialog, requesting to switch to the online mode to download fresh content from
specified URL.

Set ShowGoOnlineMessage property to True, if you want to display this dialog before HTTP request,
when the global online status is "Work Offline" (can be specified by user selecting "File | Work
Offline" menu item in Internet Explorer window).

See also
URL, WorkOffline properties;
IsGlobalOffline method.

6.2.19 Suspended

Applies to
auHTTP and auThread components.

Declaration
property Suspended: Boolean;

http://www.delphipages.com/result.cfm?SR=HTTP&AO=and&RequestTimeout=500

AutoUpgrader Professional64

© 1999-2002, UtilMind Solutions®

Description
The Suspended property indicates whether a thread (used for downloading) is currenly suspended.

Set Suspended to True to suspend download process temorary; set it False to resume it.

See also
Thread and ThreadPriority properties;
Suspended property of auThread component

6.2.20 Timeouts

Applies to
auHTTP component.

Declaration
type
 TauHTTPTimeouts = class(TPersistent)
 published
 property ConnectTimeout: DWord default 0;
 property ReceiveTimeout: DWord default 0;
 property SendTimeout: DWord default 0;
 end;

property Timeouts: TauHTTPTimeouts;

Description
The Timeouts structure used to specify the time-out values for HTTP requests. All units are in
milliseconds. If values are set to 0, the component will use default sustem values.

There are three time-out values:

 ConnectTimeout Sets or retrieves the time-out value to use for Internet connection requests. If

a connection request takes longer than this time-out value, the request is
canceled. When attempting to connect to multiple IP addresses for a single
host (a multihome host), the timeout limit is cumulative for all of the IP
addresses.

 ReceiveTimeout The time-out value, in milliseconds, to receive a response to a request. If the

receiving of data takes longer than this time-out value, the receiving is
canceled.

 SendTimeout The time-out value to send a request. If the send takes longer than this time-

out value, the send is canceled.

6.2.20.1 ConnectTimeout

Applies to
auHTTP component.

Declaration
property ConnectTimeout: DWord;

Description
The ConnectTimeout property sets or retrieves the time-out value to use for Internet connection
requests. If a connection request takes longer than this time-out value, the request is canceled.
When attempting to connect to multiple IP addresses for a single host (a multihome host), the
timeout limit is cumulative for all of the IP addresses.

auHTTP 65

© 1999-2002, UtilMind Solutions®

See also
ReceiveTimeout and SendTimeout properties.

6.2.20.2 ReceiveTimeout

Applies to
auHTTP component.

Declaration
property ReceiveTimeout: DWord;

Description
The ReceiveTimeout property sets or retrieves the time-out value to use for Internet connection
requests. If the receiving of data takes longer than this time-out value, the receiving is canceled.

See also
ConnectTimeout and SendTimeout properties.

6.2.20.3 SendTimeout

Applies to
auHTTP component.

Declaration
property SendTimeout: DWord;

Description
The SendTimeout property sets or retrieves the time-out value to use for Internet connection
requests. If the send takes longer than this time-out value, the send is canceled.

See also
ConnectTimeout and ReceiveTimeout properties.

6.2.21 Thread

Applies to
auHTTP component.

Declaration
property Thread: TacCustomThread; // Read-only !!

Description
The Thread property is the pointer to the process thread, which used for downloading the data from
the Web. This is read-only public property.

See also
Suspended and ThreadPriority properties.

6.2.22 ThreadPriority

Applies to
auHTTP and auAutoUpgrader components.

Declaration
property ThreadPriority: TThreadPriority;

Description

AutoUpgrader Professional66

© 1999-2002, UtilMind Solutions®

ThreadPriority indicates the priority used when scheduling the thread. Adjust the priority higher or
lower as needed.

TThreadPriority type defines the possible values for the Priority property of the auThread
component, as defined in the following table. The system schedules CPU cycles to each thread
based on a priority scale; the Priority property adjusts a thread's priority higher or lower on the scale.

Values Meaning

 tpIdle The thread executes only when the system is idle. The system will not interrupt
other threads to execute a thread with tpIdle priority.

 tpLowest The thread's priority is two points below normal.

 tpLower The thread's priority is one point below normal.

 tpNormal The thread has normal priority.

 tpHigher The thread's priority is one point above normal.

 tpHighest The thread's priority is two points above normal.

 tpTimeCritical The thread gets highest priority.

Warning
Boosting the thread priority of a CPU intensive operation may "starve" the other threads in the
application. Only apply priority boosts to threads that spend most of their time waiting for external
events.

See also
Suspended and Thread properties;
auThread component.

6.2.23 TransferBufferSize

Applies to
auHTTP and auAutoUpgrader components.

Declaration
type
 TauBufferSize = 256..MaxInt; // 2147483647 bytes maximum

property ReadBufferSize: TauBufferSize; // 4096 bytes by default

Description
The TransferBufferSize property specifies the size of buffer (in bytes) for writing or reading data from
the Web. For example, if TransferBufferSize is 4096 and you call Read method, the acHTTP will
read data by 4Kb blocks and trigger OnProgress event every time after downloading each 4Kb of
data.

 Also the value of TransferBufferSize serves as the size of rollback chunk, which automatically
read the component when resuming the downloading to local file on call of Resume method.

See also
Read, Pause, Resume and Upload methods and OnProgress event.

6.2.24 URL

Applies to
auHTTP component.

auHTTP 67

© 1999-2002, UtilMind Solutions®

Declaration
property URL: String;

Description
The URL property specifies the location of the Web resource in the Internet (address of document,
file, CGI program etc) to download data from remote HTTP server.

The URL address should be specified in following form:
[http[s]://]hostname[[:port]/objectname]

Examples:
http://www.appcontrols.com/download/diskcontrols_trial.exe
utilmind.com:80
https://secure.element5.com/register.html?productid=140005

 The auHTTP supports secure transaction semantics. This translates to using Secure Sockets
Layer/Private Communications Technology (SSL/PCT) and is only meaningful in HTTP requests.
You can specify URLs either with http:// or https:// prefixes.

See also
Referer property.

6.2.25 Username

Applies to
auHTTP components.

Declaration
property Username: String;

Description
The Username property specifies the username to access the data in password protected Web
directories. You don't need to specify the username if you reading non-protected data.

 You can also specify the login information dynamically, when it necessary, in the
OnPasswordRequest event handler.

See also
Password property and OnPasswordRequest event.

6.2.26 WaitThread

Applies to
auHTTP and auThread components.

Declaration
property WaitThread: Boolean;

Description
The WaitThread property controls whether the procedure that calls the Read method (which
downloads the data from the Web) should be suspended and wait until the scanning process will be
done.

Set the WaitThread to True, if you would like to read the data from the Web so that the application
does not continue with next lines of code after calling the Read method. Your application will done
download (or inform about error) before continuing to next step.

http://www.appcontrols.com/download/diskcontrols_trial.exe

AutoUpgrader Professional68

© 1999-2002, UtilMind Solutions®

See also
Thread and Suspended properties;
Read method.

6.2.27 WaitTimeout

Applies to
auHTTP and auThread components.

Declaration
property WaitTimeout: Integer;

Description
The WaitTimeout property specifies the time interval (limit), in milliseconds unit, which application
able to wait until the HTTP request will be completed.

For example, if the maximum time which you can allow to complete HTTP request is 5 seconds, set
this value to 5000 (milliseconds). If application can wait infinitely, set WaitTimeout to 0.

 When the timeout is expired, the component automatically terminates the HTTP request. To be
notified when the WaitTimeout is expired — write OnWaitTimeoutExpired event handler.

Notes
The WaitTimeout only works together with WaitThread property, only when it set to True.

See also
WaitThread, Thread, ThreadPriority and Suspended properties;
Read and Abort methods;
OnWaitTimeoutExpired event.

6.2.28 WorkOffline

Applies to
auHTTP component.

Declaration
property WorkOffline: Boolean;

Description
The WorkOffline property controls whether you would like to browse the Web data offline, and read
cached pages even if user are disconnected from Internet.

If requested file is not available for offline reading, the auHTTP component will try to connect the
remote host to download data from the Web. If user is disconnected, OnHostUnreachable event will
occurs.

This feature is the same as "Work Offline" option of the MS Internet Explorer. All requested data will
be read from cache instead of downloading files from the Web.

 The WorkOffline property works even if caching features is disabled (even if coAlwaysReload
value of CacheOptions is True).

See also
CacheOptions property;
OnDone and OnHostUnreachable events.

auHTTP 69

© 1999-2002, UtilMind Solutions®

6.3 Methods

6.3.1 Abort

Applies to
auHTTP and auAutoUpgrader components.

Declaration
procedure Abort(DeleteOutputFile: Boolean = False; HardTerminate:
Boolean = False);

Description
The Abort method terminates execution of thread which reads the data from the Web by HTTP(s)
protocol. After calling the Abort method, the OnAborted event occurs.

The Abort method contains 2 optional parameters:

 DeleteOutputFile — deletes the file, with downloaded information, specified in OutputFileName

property, if True;

 HardTerminate — terminate the thread which run the download process imediately, without

releasing Internet handles. Do not set this parameter to True, unless it really necessary, since
hard termination can lead to memory leaks!

 The download process can be resumed, in case if you downloading data to file specified in
OutputFileName property. You just need specify the incompletely downloaded file to
OutputFileName property again and call Resume method.

 However, even if you're downloading the data just to memory instead of file, the component can
easily resume the downloading (on call of Read method), because of smart behaviours of Internet
Explorer's cache. In case if you have specified to use cache in the CacheOptions property —
everything can be retreived from cache, even broken, interrupted downloads.

See also
OutputFileName and CacheOptions properties;
Read, Pause and Resume methods;
OnAborted event.

6.3.2 IsGlobalOffline

Applies to
auHTTP component.

Declaration
function IsGlobalOffline: Boolean;

Description
The IsGlobalOffline method-function returns whether the global online status of Internet Explorer is
offline. Users can change this status selecting "File | Work Offline" menu item in Internet Explorer's
window.

See also
WorkOffline and ShowGoOnlineMessage properties.

AutoUpgrader Professional70

© 1999-2002, UtilMind Solutions®

6.3.3 Pause

Applies to
auHTTP component.

Declaration
procedure Pause;

Description
The Pause method terminates execution of running download process. Actually, this method is the
same as "Abort" method with both its optional parameters set to False: Abort(False, False).

 The download process can be resumed, in case if you downloading data to file specified in
OutputFileName property. You just need specify the incompletely downloaded file to
OutputFileName property again and call Resume method.

 However, even if you're downloading the data just to memory instead of file, the component can
easily resume the downloading (on call of Read method), because of smart behaviours of Internet
Explorer's cache. In case if you have specified to use cache in the CacheOptions property —
everything can be retreived from cache, even broken, interrupted downloads.

See also
OutputFileName and CacheOptions properties;
Read, Pause and Resume methods;
OnAborted event.

6.3.4 Read

Applies to
auHTTP component.

Declaration
function Read(ForceWaitThread: Boolean = False): Boolean; // returns
False if busy OR WaitTimeout expired

Description
The Read method initiate the HTTP request to download the data from location specified in the URL
property. Function returns False if component currently busy (already processing request), OR
WaitTimeout is expired (if you waiting for completion of request in the function that calls this medod,
using WaitThread property).

The ForceWaitThread is optional (not necessary to specify) parameter, which can temporary set
WaitThread to True for only current call of Read method.

Example (code demonstrates how to search for 'HTTP' keyword in Torry.net)
Delphi:
procedure TForm1.ReadBtnClick(Sender: TObject);
begin
 auHTTP1.URL := 'http://www.torry.net/quicksearch.php';
 auHTTP1.POSTData := 'String=HTTP&Exact=Yes&Title=No';
 auHTTP1.Read;
end;

C++ Builder:

auHTTP 71

© 1999-2002, UtilMind Solutions®

void __fastcall TForm1::ReadBtnClick(TObject *Sender)
{
 auHTTP1->URL = "http://www.torry.net/quicksearch.php";
 auHTTP1->POSTData = "String=HTTP&Exact=Yes&Title=No";
 auHTTP1->Read();
}

Remarks

 The Read method fails and OnHostUnreachable event occurs if you're trying to POST some data
to the CGI but user currently working offline (even if connection to the Internet present). Posting to
the CGI programs requires active Internet connection.

See also
URL, RequestMethod, POSTData and Busy properties;
WaitThread and WaitTimeout properties;
Upload, Abort, Pause and Resume methods;
HTTPReadString function.

6.3.5 Resume

Applies to
auHTTP component.

Declaration
procedure Resume;

Description
The Resume method used to resume downloading of data to some file specified in the
OutputFileName property.

After calling of this method, the component determinates the size of file specified in the
OutputFileName, and initiates downloading of the rest of broken or paused download, to append the
rest of data to the end of local file.

 The acHTTP automatically uses simple and smart scheme of checking whether the file which
you're trying to Resume has been updated or modified. Before downloading of the data which
should be appended, it downloads small data chunk (with size specified in TransferBufferSize
property), before the break, and compares with the same data chunk at the end of file.

In case if compared data are equal — it continue downloading and append downloaded data to the
end of local file. Otherwise it assume that file which beging downloaded has been changed, and
starts download from beginning.

By default TransferBufferSize = 4Kb, so every time when you call Resume method, the component
download 4Kb of extra "rollback" data to check file consistancy.

Note

 Use Resume method only if you downloading the data to file, specified in the OutputFileName
property. Otherwise, in case if file name not specified, it will download some object from the Web
from beginning. Effect will be the same as you calling Read method.

 You can use Resume method instead of Read. In case if file does not exists — Resume method
will create it and download some file from beginning.

See also
OutputFileName, CacheOptions and TransferBufferSize properties;

AutoUpgrader Professional72

© 1999-2002, UtilMind Solutions®

Read, Pause and Abort methods.

6.3.6 ReadRange

Applies to
auHTTP component.

Declaration
function ReadRange(StartRange: Cardinal; EndRange: Cardinal = 0;
ForceWaitThread: Boolean = False);

Description
The ReadRange property downloads part of some binary data file from the Web. The part of that file
can be specified by StartRange and EndRange parameters.

StartRange parameter specifies starting position of data block to download, and the EndRange
parameter specified the end of the block. In case if EndRange is 0, the component will download
part from StartRange till the end of file.

 Alternatively, for partial download, you can use StartRange and EndRange properties in the
Range structure and use usual Read method.

See also
URL, RequestMethod and Busy properties;
WaitThread and WaitTimeout properties;
Read, Abort, Pause, Resume methods.

6.3.7 Upload

Applies to
auHTTP component.

Declaration
function Upload(NumberOfFields: Word): Boolean; // returns False if busy

Description
The Upload method starts HTTP request to upload files via HTTP protocol, using multipart/form-data
POST method, introduced in RFC 1867.

Before starting the uploading, it requests fields which should be uploaded using
OnUploadFieldRequest event. To specify number of fields which should be uploaded — pass it in
NumberOfFields parameter (this specifies how many times the OnUploadFieldRequest should be
triggered to request another piece of data).

After requesting the data required to build HTTP request, it starts it with multipart/form-data Content
Type in the HTTP header and constantly trigger OnUploadProgress event after each data block with
size specified in TransferBufferSize property.

Example
procedure TForm1.UploadBtnClick(Sender: TObject);
begin
 auHTTP1.Upload(2); // upload 2 files
{ To specify the data which should uploaded — use OnUploadFieldRequest
event }
end;

http://www.faqs.org/rfcs/rfc821.html

auHTTP 73

© 1999-2002, UtilMind Solutions®

Remarks

 Unfortunately the web server itself can NOT receive files by HTTP protocol. For this purpose you
should use some intermediate CGI program, in example, written in C, Perl or PHP (or even in
Delphi, if you're running Windows server). If you would like to get examples on how to create scripts
which can receive files by HTTP protocol, please check out PHP.net (PHP manuals), or www.cgi-
resources.com (CGI Resource Index).

 Some versions of Apache HTTP server has a bug which does not allow to upload files to
password protected directories. In case if you always receive timeout error when trying to upload file
to password protected URL and even modifications of timeout values in PHP.INI won't help, don't
despair and try to upload it to normal directory.

Check out also OnUploadFieldRequest topic for more detailed description on how to upload data.

See also
OnUploadFieldRequest, OnUploadProgress and OnUploadCGITimeoutFailed events;
Read, Abort methods and TransferBufferSize property.

6.3.8 UploadByFieldNames

Applies to
auHTTP component.

Declaration
function UploadByFieldNames(const FieldNames: Array of String): Boolean;
// returns False if busy

Description
The UploadByFieldNames, like the Upload method starts HTTP request to upload data via HTTP
protocol, using multipart/form-data POST method, introduced in RFC 1867.

 However, unlike, the Upload method, the UploadByFiles allows to specify the field names as
parameters, so in the OnUploadFieldRequest event you just need to write the data to UploadStream
(data proper to each FieldName), without requiring to specify the FieldName's.

Before starting the uploading, it requests fields which should be uploaded using
OnUploadFieldRequest event. To specify number of fields which should be uploaded — pass it in
NumberOfFields parameter (this specifies how many times the OnUploadFieldRequest should be
triggered to request another piece of data).

After requesting the data required to build HTTP request, it starts it with multipart/form-data Content
Type in the HTTP header and constantly trigger OnUploadProgress event after each data block with
size specified in TransferBufferSize property.

Example
procedure TForm1.UploadBtnClick(Sender: TObject);
begin
 auHTTP1.Upload(['field1', 'field2']); // upload 2 files
{ To specify the data which should uploaded — use OnUploadFieldRequest
event }
end;

Remark

 Unfortunately the web server itself can NOT receive files by HTTP protocol. For this purpose you
should use some intermediate CGI program, in example, written in C, Perl or PHP (or even in

http://www.php.net
http://www.cgi-resources.com
http://www.faqs.org/rfcs/rfc821.html

AutoUpgrader Professional74

© 1999-2002, UtilMind Solutions®

Delphi, if you're running Windows server). If you would like to get examples on how to create scripts
which can receive files by HTTP protocol, please check out PHP.net (PHP manuals), or www.cgi-
resources.com (CGI Resource Index).

Check out also OnUploadFieldRequest topic for more detailed description on how to upload data.

See also
UploadByFieldNames method;
OnUploadFieldRequest and OnUploadProgress events;
Read, Abort methods and TransferBufferSize property.

6.4 Events

6.4.1 OnAborted

Applies to
auHTTP and auAutoUpgrader components.

Declaration
property OnAborted: TNotifyEvent;

Description
The OnAborted event occurs when user interrupts the process of reading the data from Internet,
after calling the Abort method.

See also
Abort method.

6.4.2 OnAnyError

Applies to
auHTTP component.

Declaration
property OnAnyError: TNotifyEvent;

Description
The OnAnyError event occurs when ANY error has occured: connection lost (OnConnLost), host
unreachable (OnHostUnreachable) or server returned the HTTP error in response header
(OnHTTPError).

See also
OnConnLost, OnHostUnreachable and OnHTTPError events.

6.4.3 OnBeforeSendRequest

Applies to
auHTTP component.

Declaration
type
 TauHTTPBeforeSendRequest = procedure(Sender: TObject; hRequest:
hInternet) of object;

property OnBeforeSendRequest: TauHTTPBeforeSendRequest;

http://www.php.net
http://www.cgi-resources.com

auHTTP 75

© 1999-2002, UtilMind Solutions®

Description
The OnBeforeSendRequest event occurs just before the component sends HTTP query to the
server, at once after opening the internet request (by HTTPOpenRequest function of WinInet). The
hRequest parameter is the Internet handle, returned by HTTPOpenRequest and can be used to
specify additional Internet options to the request.

Write OnBeforeSendRequest event handler if you want to specify custom Internet options using "low
level" InternetSetOptions function (from WinInet unit), to the hRequest handle.

Example
procedure TForm1.auHTTP1BeforeSendRequest(Sender: TObject;
 hRequest: Pointer);
begin
 InternetSetOption(hRequest, INTERNET_OPTION_IGNORE_OFFLINE, nil, 0);
end;

6.4.4 OnConnLost

Applies to
auHTTP component.

Declaration
type
 TauHTTPConnLostEvent = procedure(Sender: TObject;
 const ContentType: String; FileSize, BytesRead: Integer;
 Stream: TStream) of object;

property OnConnLost: TauHTTPConnLostEvent;

Description
The OnConnLost event occurs when the connection with remote server lost for some reason, at the
moment of downloading the data. However you still can use some data which was already
downloaded (Stream parameter).

There are following parameters which passes to the event handler:
Parameters Meaning

 ContentType the media type of received data. For example if you downloaded usual text-file, the
ContentType will be "text/plan". For HTML page ContentType will "text/html", for
executable file — "application/binary" and "image/jpeg" for JPEG, JPG and JPE
files.
For more information about Internet media types, please read RFC 2045, 2046,
2047, 2048, and 2077 (http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html).
Check out also the Internet media type registry at ftp://ftp.iana.org/in-
notes/iana/assignments/media-types;

 FileSize total size of data which we've tryed to download, in bytes (if was possible to
determinate). Note: some servers can send files without information about content
length;

 BytesRead size of data which already received, in bytes;

 Stream stream which contains already downloaded data. (Check out description of
TStream, TMemoryStream and TFIleStream classes for more info).

See also
OnAnyError, OnProgress and OnDone events.

http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html

AutoUpgrader Professional76

© 1999-2002, UtilMind Solutions®

6.4.5 OnDone

Applies to
auHTTP component.

Declaration
type
 TauHTTPDoneEvent = procedure(Sender: TObject;
 const ContentType: String;
 FileSize: Integer; Stream: TStream) of object;

property OnDone: TauHTTPDoneEvent;

Description
The OnDone event occurs when the auHTTP component has successfully downloaded requested
Web resource.

The component pass to the OnDone event handler 3 following parameters:
Parameters Meaning

 ContentType the media type (also known as Multipurpose Internet Mail Extension (MIME) type) of

requested document. For example if you downloaded usual text-file, the ContentType
will be "text/plan". For HTML page ContentType will "text/html", for executable file —
"application/binary" and "image/jpeg" for JPEG, JPG and JPE files.
For more information about Internet media types, please read RFC 2045, 2046,
2047, 2048, and 2077 (http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html).
Check out also the Internet media type registry at ftp://ftp.iana.org/in-
notes/iana/assignments/media-types;

 FileSize size of downloaded data in bytes;

 Stream the memory stream which contains downloaded data (check out description of

TMemoryStream class for more info). It can be nil (null) if the OutputFileName
property was specified before request (before calling the Read method).

Example
Delphi:
procedure TForm1.auHTTP1Done(Sender: TObject;
 ContentType: string; FileSize: Integer; Stream: TStream);
var
 Str: String;
begin
 if Stream = nil then
 Exit; // can be already stored to file specified by OutputFileName

 with (Stream as TMemoryStream) do
 if OutToMemoBox1.Checked then // output to Memo1
 begin
 SetLength(Str, Size);
 Stream.Read(Str[1], Size); // or Move(Memory^, Str[1], Size);
 Memo1.Text := Str;
 end
 else
 begin // save to file
 Memo1.Text := 'Saved to c:\httptest.dat';
 SaveToFile('c:\httptest.dat');
 end;

http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html

auHTTP 77

© 1999-2002, UtilMind Solutions®

 StatusBar1.Panels[0].Text := 'Successfully downloaded ' +
IntToStr(FileSize) + ' bytes';
end;

C++ Builder:
void __fastcall TForm1::auHTTP1Done(TObject *Sender,
 AnsiString ContentType, int FileSize, TStream *Stream)
{
 AnsiString Str;

 if (Out1->Checked) {
 Str.SetLength(Stream->Size);
 Move(((TMemoryStream*)Stream)->Memory, &Str[1], Stream->Size);
 Memo1->Text = Str;
 }else {
 Memo1->Text = "Saved to c:\httptest.dat";
 ((TMemoryStream*)Stream)->SaveToFile("c:\httptest.dat");
 }

 StatusBar1->Panels->Items[0]->Text = "Successfully downloaded " +
IntToStr(FileSize) + " bytes";
}

See also
OnProgress, OnHTTPError, OnHeaderInfo and OnDoneInterrupted events;
Read and Abort methods;
OutputFileName, HideOutputFile and FileName properties.

6.4.6 OnDoneInterrupted

Applies to
auHTTP component.

Declaration
property OnDoneInterrupted: TNotifyEvent;

Description
The OnDoneInterrupted event occurs if the download process was interrupted in OnHeaderInfo
event handler.

This is optional event to be notified when the component has terminated the HTTP query after
receving the headers of the document before that the download process begins. This event only
executed if you set ContinueDownloading parameter to False in the OnHeaderInfo event handler.

 Note, that no errors events will be receive if you set ContinueDownload of OnHeaderInfo to True,
but this event. So you must handle all errors inside OnHeaderInfo event.

See also
OnHeaderInfo event.

6.4.7 OnHeaderInfo

Applies to
auHTTP component.

AutoUpgrader Professional78

© 1999-2002, UtilMind Solutions®

Declaration
type
 TauHTTPHeaderInfoEvent = procedure(Sender: TObject; ErrorCode:
Integer;
 const RawHeadersCRLF, ContentType, ContentLanguage, ContentEncoding:
String;
 ContentLength: Integer; const Location: String;
 const Date, LastModified, Expires: TDateTime; const ETag: String;
 var ContinueDownload: Boolean) of object;

property OnHeaderInfo: TauHTTPHeaderInfo;

Description
The OnHeaderInfo event returns the headers the response from the HTTP server, before
downloading the document content.

You can write this event handler to receive all response headers and to decide whether you want to
download the document. If you decided to NOT download it, (for example, if ErrorCode is not 200-
OK, and not 206-Partial content) simply set ContinueDownload parameter to False in the event
handler.

The auHTTP passes to the OnHeaderInfo event handler following parameters:
Parameters Meaning

 ErrorCode the status code of HTTP request (see the list of possible status codes);

 RawHeadersCRLF contains ALL the headers reseived from the HTTP server in response to
request, as plain text string, separated by CRLF characters (0D0A);

 ContentType contains the identifier of MIME-type of requested document. For more
information about Internet media types, please read RFC 2045, 2046, 2047,
2048, and 2077. Check out also the Internet media type registry at
ftp://ftp.iana.org/in-notes/iana/assignments/media-types;

 ContentLanguage identifies a language of document content (if provided), or contains empty
string if the language is not provided or not applicable for the type requested
document;

 ContentEncoding identifies the encoding method of requested document;

 ContentLength determinates the size of document, if the document is binary file.
Unfortunately most servers does not provide the content length for ASCII
documents with "text/*" MIME-type, since their content can be generated
dynamically by CGI programs;

 Location determines the location from where the content is about to be downloaded
(use this parameter to get the actual location of document in case if
connection has been redirected by server to another location);

 Date determines the date and time at which the HTTP response was originated;

 LastModified the date and time at which the server belives the resource was last modified.
Note: Servers without a clock assign ETag parameter instead of last
modified and expiration time;

 Expires the date and time after which the resource should be considered outdated.
Note: Servers without a clock assign ETag parameter instead of last
modified and expiration time;

 ETag ETag, also known as "Expires Tag", or some another additional information
from server. This information generated automatically by server without a
clock (in this case LastModified and Expires values are not set), or
generated dynamically by CGI program (in Perl or PHP) and used to transfer
some important information, i.e: whether the document expired etc;

auHTTP 79

© 1999-2002, UtilMind Solutions®

 ContinueDownload used to interrupt the download process. If you don't want to continue
download the requested file — set it to False.

Notes

 All date/time values that passed to the OnHeaderInfo even handler, is already converted from
the server's time to local time, taking in account the time zone and daylight bias. To get unmodified
string parameters — parse the raw headers provided by RawHeadersCRLF parameter.

 This event does not occur if you downloading data from local file (use "file://" prefix in the URL).

 If you set ContinueDownload parameter to True (imediately terminate the process without
downloading of the content of document), neither OnAnyError and OnHTTPError events will not
called. The only event which you will received after it — is OnDoneInterrupted. This means that if
you plan to handle HTTP errors in OnHTTPError event handler, you must move this code to
OnHeaderInfo event handler.

See also
OnDone, OnDoneInterrupted, OnHTTPError and OnAnyError events;
Abort method;
HTTP status codes.

6.4.8 OnHostUnreachable

Applies to
auHTTP and auAutoUpgrader components.

Declaration
property OnHostUnrachable: TNotifyEvent;

Description
The OnHostUnreachable event occurs if the auHTTP can not connect to the remote host specified
in the URL property. Possible reasons of this problem is:
1. User currently not connected to the Internet;
2. Hostname is unknown (check spelling of domain name);
3. Remote server is down (disconnected from Internet).

Remarks
1.The OnHostUnreachable event occurs also when user currently working offline (even if connection

to the Internet present) and would like to post some data, specified in the POSTData property, to
the CGI program. Posting to the CGI programs requires active Internet connection.

Example
Delphi:
procedure TForm1.auHTTP1HostUnreachable(Sender: TObject);
begin
 Application.MessageBox(PChar('Host http://' + auHTTP1.HostName + ' is
unreachable.'#13'Please check your Internet connection and'#13'retry
your HTTP request again later.'),
 PChar(Application.Title),
 MB_OK or MB_ICONSTOP);
end;

C++ Builder:
void __fastcall TForm1::auHTTP1HostUnreachable(TObject *Sender)
{

AutoUpgrader Professional80

© 1999-2002, UtilMind Solutions®

 AnsiString Msg =
 "Host http://" + auHTTP1->HostName + " is unreachable.\n\n"
 "Please check your Internet connection and\n"
 "try to upgrade this software again later.";
 Application->MessageBox(Msg.c_str(),
 Application->Title.c_str(),
 MB_OK | MB_ICONSTOP);
}

See also
URL property; OnAnyError event.

6.4.9 OnHTTPError

Applies to
auHTTP component.

Declaration
type
 TauHTTPErrorEvent = procedure(Sender: TObject;
 ErrorCode: Integer; Stream: TStream) of object;

property OnHTTPError: TauHTTPErrorEvent;

Description
The OnHTTPError event occurs if some error code has received in the header of response from
HTTP server.

ErrorCode parameter contains the number which identifies the HTTP error (see the list of
HTTP Status Codes to recognize an error).

Stream contains the error page generated by server.

 Most often errors is 404 (requested document not found), 403 (view forbidden) and 500 (CGI
script failed).

 To handle error #401 (Access denied / Password required required to access) — write
OnPasswordRequest event handler. (If OnPasswordRequest event handler exists, OnHTTPError
will not occurs on error 401.)

 Alternatively you can get HTTP error code in OnHeaderInfo event handler and decide whether
to continue download (error page), or not, so this will save some client's bandwidth from
downloading error page from server.

Remarks

 If it returns 0 in ErrorCode paramter, this means that component for some reason is unable to
determinate the status code of HTTP query. However this is not always means fatal error like
OnHostUnreachable. It's possible that server simply did not sent the status code in the header of
response.

Example
Delphi:
procedure TForm1.auHTTP1HTTPError(Sender: TObject;
 ErrorCode: Integer; Stream: TStream);
var

auHTTP 81

© 1999-2002, UtilMind Solutions®

 Str: String;
begin
 with Stream as TMemoryStream do
 if OutToMemo1.Checked then
 begin // Output to Memo1
 SetLength(Str, Size);
 Move(Memory^, Str[1], Size);
 Memo1.Text := Str;
 end
 else // Save to file
 begin
 Memo1.Text := 'Saved to c:\httptest.dat';
 SaveToFile('c:\httptest.dat');
 end;

 case ErrorCode of
 404: Str := '404: Document not found';
 500: Str := '500: CGI script failed';
 else // Mysterious reason
 Str := IntToStr(ErrorCode);
 end;

 if (ErrorCode = HTTP_STATUS_OK) or (ErrorCode =
HTTP_STATUS_PARTIAL_CONTENT) then // consts from WinInet.pas
 begin
 ContinueDownload := False;
 Exit;
 end;

 StatusBar1.Panels[0].Text := 'HTTP Error #' + Str;
end;

C++ Builder:
void __fastcall TForm1::auHTTP1HTTPError(TObject *Sender,
 int ErrorCode, TStream *Stream)
{
 AnsiString Str;

 if (OutToMemo1->Checked) { // Output to Memo1
 Str.SetLength(Stream->Size);
 Move(((TMemoryStream*)Stream)->Memory, &Str[1], Stream->Size);
 Memo1->Text = Str;
 }else { // Save to file
 Memo1->Text = "Saved to c:\httptest.dat";
 ((TMemoryStream*)Stream)->SaveToFile("c:\httptest.dat");
 }

 switch (ErrorCode) {
 case 404: Str = "404: Document not found";
 case 500: Str = "500: CGI script failed";
 default: Str = IntToStr(ErrorCode); // Mysterious reason
 };

 StatusBar1->Panels->Items[0]->Text = "HTTP Error #" + Str;
}

AutoUpgrader Professional82

© 1999-2002, UtilMind Solutions®

See also
HTTP Status Codes
OnHeaderInfo, OnPasswordRequest, OnAnyError and OnDone events.

6.4.10 OnOutputFileError

Applies to
auHTTP component.

Declaration
property OnOutputFileError: TNotifyEvent;

Description
The OnOutputFileError occurs if the HTTP component tries to download data to file, specified in
OutputFileName property, but the file can not be created (e.g. path not exists, or file locked by
system etc).

See also
OutputFileName and OutputFileAttributes properties;
OnAnyError event.

6.4.11 OnPasswordRequest

Applies to
auHTTP and auAutoUpgrader components.

Declaration
type
 TauHTTPPasswordRequestEvent = procedure(Sender: TObject;
 const Realm: String; var TryAgain: Boolean) of object;

property OnPasswordRequest: TauHTTPPasswordRequestEvent;

Description
The OnPasswordRequest event can be used to implement the dialog which asks user for his
username and password to access the password protected Web area.

Set TryAgain parameter to True to retry the HTTP query with correct username and password.
(Don't forget to specify correct login information in this event handler to Username and Password
properties.)

Note

 If you leave this event unhandled (set TryAgain parameter to False), the component will generate
error code #401 (Access Denied), which will be passed to OnHTTPError event.

Example
Delphi:
procedure TForm1.HTTP1PasswordRequest(Sender: TObject;
 const Realm: String; var TryAgain: Boolean);
begin
 { UserPassForm is any form with two edit boxes used for entering the
login information (username and password) }
 UserPassForm.RealmLabel := Realm;
 if UserPassForm.ShowModal = ID_OK then
 begin
 auHTTP1.Username := UserPassForm.UsernameEdit.Text;

auHTTP 83

© 1999-2002, UtilMind Solutions®

 auHTTP1.Password := UserPassForm.PasswordEdit.Text;
 TryAgain := True; // Retry HTTP query (download attempt)
 end;
end;

C++ Builder:
void __fastcall TForm1::auHTTP1PasswordRequest(TObject *Sender,
 AnsiString Realm, bool &TryAgain)
{
 UserPassForm->RealmLabel = Realm;
 if (UserPassForm->ShowModal() == ID_OK)
 {
 auHTTP1->Username = UserPassForm->UsernameEdit->Text;
 auHTTP1->Password = UserPassForm->PasswordEdit->Text;
 TryAgain = True; // Retry HTTP query (download attempt)
 };
}

See also
Username and Password properties; OnHTTPError event;
HTTP Status Codes.

6.4.12 OnProgress

Applies to
auHTTP and auAutoUpgrader components.

Declaration
type
 TauHTTPProgressEvent = procedure(Sender: TObject;
 const ContentType: String; FileSize, BytesRead, ElapsedTime,
 EstimatedTimeLeft: Integer; PercentsDone: Byte;
 TransferRate: Single; Stream: TStream) of object;

property OnProgress: TauHTTPProgressEvent;

Description
The OnProgress event occurs every time when component has successfully downloaded part of
data received in response to HTTP query.

Write OnProgress event handler to show the download progress (PercentsDone parameter
indicates the progress in percents) or handle part of data which already received (Stream
parameter). Also, the auHTTP component automatically calculate elapsed and estimated time
before finishing download and speed of data transfer.

The auHTTP passes to the OnProgress event handler following parameters:
Parameter Meaning

 ContentType the MIME-type of received data. For example if you downloaded usual text-file,
the ContentType will be "text/plan". For HTML page ContentType will "text/html",
for executable file — "application/binary" and "image/jpeg" for JPEG, JPG and
JPE files.
For more information about Internet media types, please read RFC 2045, 2046,
2047, 2048, and 2077. Check out also the Internet media type registry at
ftp://ftp.iana.org/in-notes/iana/assignments/media-types;

AutoUpgrader Professional84

© 1999-2002, UtilMind Solutions®

 FileSize total size of data which we currently downloading, in bytes (if possible to
determinate).
Note: usually server does not provide information about content-length for non-
binary data (i.e: for "text/html" or "text/plain" content types);

 BytesRead size of already received data, in bytes;

 ElapsedTime time elapsed from beginning of download (in seconds);

 EstimatedTimeLeft estimated time left before finishing of download (Formula:
X := FileSize / BytesRead * ElapsedTime - ElapsedTime);

 PercentsDone progress in percents (0%..100%);

 TransferRate speed of data transfer (in Kb/s);

 Stream stream which contains already downloaded data. (Check out description of
TStream, TMemoryStream and TFIleStream classes for more info).

 The OnProgress event triggered after downloading each block of data with size specified in
TransferBufferSize property

Example
Delphi:
procedure TauAutoUpgrader.HTTPProgress(Sender: TObject; ContentType:

String; FileSize, BytesRead, ElapsedTime, EstimatedTimeLeft: Integer;
PercentsDone: Byte; TransferRate: Single; Stream: TStream);

begin
 // progress bar position
 CurrentFileProgressBar.Position := PercentsDone;

 // file size
 FileSizeLabel.Caption :=
 Format('File size: %.1f Kb', [FileSize / 1024]);

 // downloaded (in Kb)
 DownloadedLabel.Caption :=
 Format('Downloaded: %.1f Kb:', [BytesRead / 1024]);

 // transfer rate
 TransRateLabel.Caption :=
 Format('Transfer rate: %.1f Kb/s', [TransferRate]);

 // estimated time left
 EstTimeLeftLabel.Caption :=
 Format('Estimated time left: %d:%.2d:%.2d',
 [EstimatedTimeLeft div 60 div 60, // hours
 EstimatedTimeLeft div 60 mod 60, // minutes
 EstimatedTimeLeft mod 60 mod 60]); // seconds
end;

C++ Builder:
void __fastcall TForm1::auHTTP1Progress(TObject *Sender,
 AnsiString ContentType, int FileSize, int BytesRead,
 int ElapsedTime, int EstimatedTimeLeft,
 BYTE PercentsDone, float TransferRate, TStream *Stream)
{
 // progress bar position
 ProgressCurrentFile->Position = PercentsDone;

auHTTP 85

© 1999-2002, UtilMind Solutions®

 // file size
 FileSizeLabel->Caption =
 Format("File size: %.1f Kb:",
 ARRAYOFCONST(((float)FileSize / 1024)));

 // downloaded (in Kb)
 DownloadedLabel->Caption =
 Format("Downloaded: %.1f Kb:",
 ARRAYOFCONST(((float)BytesRead / 1024)));

 // transfer rate
 TransRateLabel->Caption =
 Format("Transfer rate: %.1f Kb/s",
 ARRAYOFCONST(((float)TransferRate)));

 // estimated time left
 EstTimeLeftLabel->Caption =
 Format("Estimated time left: %d:%.2d:%.2d",
 ARRAYOFCONST((EstimatedTimeLeft / 60 / 60, // hours
 EstimatedTimeLeft / 60 % 60, // minutes
 EstimatedTimeLeft % 60 % 60))); // seconds
}

See also
OnDone event.

6.4.13 OnProxyAuthenticationRequest

Applies to
auHTTP and auAutoUpgrader components.

Declaration
type
 TauHTTPProxyAuthenticationRequestEvent = procedure(Sender: TObject;
 var ProxyUsername, ProxyPassword: String;
 var TryAgain: Boolean) of object;

property OnProxyAuthenticationRequest:
TauHTTPProxyAuthenticationRequestEvent;

Description
The OnProxyAuthenticationRequest event should be used to prompt users for their
username/password to access the Web via secure proxy server which requires authentication.

Write this event to prompt and specify the ProxyUsername and ProxyPassword parameters,
required for the proxy authentication, and set TryAgain parameter to True, to retry the HTTP query
with provided login information.

 Alternatively you can specify ProxyUsername and ProxyPassword properties in the Proxy
structure, before the request. In case if specified username and password is okay, the
OnProxyAuthenticationRequest event will not occur.

When you specify ProxyUsername and ProxyPassword parameters in this event — they also will be
put to the Proxy structure, to be used on next HTTP request.

Notes

AutoUpgrader Professional86

© 1999-2002, UtilMind Solutions®

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

 If you leave this event unhandled (if you set TryAgain parameter to False), the component will
generate error code #407 (Proxy Authentication Required), which will be passed to OnHTTPError
event.

See also
Proxy and InternetOptions properties;
OnHTTPError event;
HTTP Status Codes.

6.4.14 OnRedirected

Applies to
auHTTP component.

Declaration
type
 TauHTTPRedirected = procedure(Sender: TObject; const NewURL: String)
of object;

property OnRedirected: TauHTTPRedirected;

Description
The OnRedirected event occurs if the server has redirected the HTTP query to another location
(when redirection has been detected by internal status callback procedure). This means that the
data which about to be posted, and the document which about to be downloaded in response of
your query, will be taken from another location, specified in NewURL parameter.

See also
Location parameter in OnHeaderInfo event.

6.4.15 OnUploadCGITimeoutFailed

Applies to
auHTTP component.

Declaration
procedure OnUploadCGITimeoutFailed: TNotifyEvent;

Description
The OnUploadCGITimeoutFailed event occurs if server has dropped connection while uploading
some files to CGI script.

 If the CGI program is PHP script, then sometime this can be fixed by increasing of
"max_execution_time" and "max_input_time" variables in configuration (PHP.ini).

See also
Upload method.

6.4.16 OnUploadFieldRequest

Applies to
auHTTP component.

auHTTP 87

© 1999-2002, UtilMind Solutions®

Declaration
type
 TauHTTPUploadFieldRequest = procedure(Sender: TObject;
 FileIndex: Word; UploadStream: TStream;
 var FieldName, FileName: String) of object;

procedure OnUploadFieldRequest: TauHTTPUploadFieldRequest;

Description
The OnUploadFieldRequest should be used to put the FieldName, FileName (if required), and data
to the stream (UploadStream parameter) for further uploading to the CGI application.

The auHTTP passes to the OnUploadFieldRequest event handler following parameters:
Parameter Meaning
FileIndex parameter specifies the index of data-field/file which should be uploaded. (Note:

Total number of fields/files which should be uploaded must be specified on call of
Upload method. This parameter is the index of file in queue.)

UploadStream parameter is the empty stream which should be used to write data for uploading.
(Use Stream.Write() method to put data to stream, however, since this is
TMemoryStream you can use other methods of TMemoryStreams).

FieldName should be specified in this event handler. This is the name of form field.

FileName is the optional parameter used to specify local path and filename of uploaded file. It
does not transmitted to CGI if empty. Use it only if your CGI application should
know the real filename.

Example
procedure TForm1.auHTTP1UploadFieldRequest(Sender: TObject;
 FileIndex: Word; UploadStream: TStream; var FieldName, FileName:
String);
begin
 if FileIndex = 0 then // first file
 begin
 FieldName := 'img1';
 FileName := 'c:\1.jpg';
 end
 else // second file, if FileIndex = 1
 begin
 FieldName := 'img2';
 FileName := 'c:\2.jpg';
 end;

 // put file data to stream
 (UploadStream as TMemoryStream).LoadFromFile(FileName);
end;

Remarks

 Unfortunately the web server itself can NOT receive files by HTTP protocol. For this purpose you
should use some intermediate CGI program, in example, written in C, Perl or PHP (or even in
Delphi, if you're running Windows server). If you would like to get examples on how to create scripts
which can receive files by HTTP protocol, please check out PHP.net (PHP manuals), or www.cgi-
resources.com (CGI Resource Index).

Here is an example of PHP script which we are using to upload picture from one our program:

http://www.php.net
http://www.cgi-resources.com

AutoUpgrader Professional88

© 1999-2002, UtilMind Solutions®

<?php

$picdir = '/data/www/domains/images.utilmind.com/images/';

if (($index == '') || ($user == '')) die('0'); // not enough
parameters POST'ed

$big = $picdir.$user.$index.'.big'; // big picture
$small = $picdir.$user.$index.'.small'; //thumbnailed image

if ((isset($pic)) && (isset($smallpic))) { // upload (else -- delete
it)
 copy($pic, $big) or die('2'); // store big picture
 copy($smallpic, $small) or die('3'); // store thumbnailed image
} else {
 if (file_exists($big)) unlink($big); // delete big picture
 if (file_exists($small)) unlink($small); //delete thumbnailed image
}

?>
1

 If script above does not work for some reason — use $_FILES predefined variable
($_FILES['fieldname']['name'] returns the name of uploaded file, $_FILES['fieldname']['tmp_name']
returns the location where uploaded data temporary stored. Following PHP function moves
temporary file to permanent location:
move_uploaded_file($_FILES['field_name']['tmp_name'],
$_SERVER['DOCUMENT_ROOT'].'/permanent_location/file.dat') or
die('Cannot copy file!');

 Here is the link to nice file uploader class in PHP: http://dave.imarc.net/downloads/fileupload.zip

And on Client side we are using following code to POST required data:
procedure TMEMPicUploader.UploadPictureHTTPFieldRequest(Sender:
TObject;
 FileIndex: Word; UploadStream: TStream; var FieldName,
 FileName: String);
const
 FieldNames: Array[0..3] of String = ('user', 'index', 'pic',
'smallpic');
var
 W, H: Integer;
 PicIndexStr: String;
 BigImage, SmallImage: TacProportionalImage;
begin
 FieldName := FieldNames[FileIndex];

 with UploadStream, Client.MyProfile do
 case FileIndex of
 0: Write(Username[1], Length(Username));
 1: begin
 PicIndexStr := IntToStr(FPictureIndex);
 UploadStream.Write(PicIndexStr[1], Length(PicIndexStr));
 end;
 else
 FileName := Username;

http://dave.imarc.net/downloads/fileupload.zip

auHTTP 89

© 1999-2002, UtilMind Solutions®

 if FileIndex = 2 then
 FPicture.Graphic.SaveToStream(UploadStream) // normal picture
 else
 begin // thumbnailed picture
 BigImage := TacProportionalImage.Create(Self);
 try
 BigImage.Picture.Assign(FPicture);
 BigImage.Width := FThumbnailWidth;
 BigImage.Height := FThumbnailHeight;
 SmallImage := TacProportionalImage.Create(Self);
 try
 // CREATE THUMBNAILED IMAGE
 with BigImage, DrawRect do
 begin
 W := Right - Left;
 H := Bottom - Top;
 with SmallImage.Picture.Bitmap do
 begin
 Width := W;
 Height := H;
 end;
 SmallImage.Canvas.StretchDraw(Rect(0, 0, W, H),
Picture.Graphic);
 end;

 with TJPEGImage.Create do
 try
 Assign(SmallImage.Picture.Bitmap);
 SaveToStream(UploadStream);
 finally
 Free;
 end;
 finally
 SmallImage.Free;
 end;
 finally
 BigImage.Free;
 end;
 end;
 end;
end;

 If you want to implement uploading of some bulky data to password protected directories, you
must know that all uploading data is sent in the headers of HTTP request, before the HTTP server
returns the notice that that login information is required. So you must specify Username and
Password before uploading, otherwise, if you specifying login information in the
OnPasswordRequest event handler, all request headers (all uploading files) will be sent more than
once, every time when you set TryAgain parameter of OnPasswordRequest event handler to True.

See also
Upload method and OnUploadProgress event.

6.4.17 OnUploadProgress

Applies to
auHTTP component.

AutoUpgrader Professional90

© 1999-2002, UtilMind Solutions®

Declaration
type
 TauHTTPUploadProgressEvent = procedure(Sender: TObject;
 DataSize, BytesTransferred,
 ElapsedTime, EstimatedTimeLeft: Integer;
 PercentsDone: Byte; TransferRate: Single) of object;

procedure OnUploadProgress: TauHTTPUploadProgressEvent;

Description
The OnUploadProgress event occurs every time when auHTTP uploaded the block of data (size of
block equal to TransferBufferSize) to the CGI application. Use it to display the progress of uploading
files.

Write OnUploadProgress event handler to show the upload progress (PercentsDone parameter
indicate the progress in percents), elapsed and estimated time before finishing download and speed
of data transfer.

The auHTTP passes to the OnUploadProgress event handler following parameters:
Parameter Meaning

 DataSize total size of data which we currently downloading, in bytes (if possible to
determinate).

 BytesRead size of already received data, in bytes;

 ElapsedTime time elapsed from beginning of download (in seconds);

 EstimatedTimeLeft estimated time left before finishing of download (Formula:
X := FileSize / BytesRead * ElapsedTime - ElapsedTime);

 PercentsDone progress in percents (0%..100%);

 TransferRate speed of data transfer (in Kb/s).

Example
Delphi:
procedure TForm1.auHTTP1UploadProgress(Sender: TObject; DataSize,

BytesRead, ElapsedTime, EstimatedTimeLeft: Integer; PercentsDone:
Byte; TransferRate: Single; Stream: TStream);

begin
 // progress bar position
 CurrentFileProgressBar.Position := PercentsDone;

 // file size
 FileSizeLabel.Caption :=
 Format('File size: %.1f Kb', [FileSize / 1024]);

 // downloaded (in Kb)
 DownloadedLabel.Caption :=
 Format('Downloaded: %.1f Kb:', [BytesRead / 1024]);

 // transfer rate
 TransRateLabel.Caption :=
 Format('Transfer rate: %.1f Kb/s', [TransferRate]);

 // estimated time left
 EstTimeLeftLabel.Caption :=
 Format('Estimated time left: %d:%.2d:%.2d',
 [EstimatedTimeLeft div 60 div 60, // hours
 EstimatedTimeLeft div 60 mod 60, // minutes

auHTTP 91

© 1999-2002, UtilMind Solutions®

 EstimatedTimeLeft mod 60 mod 60]); // seconds
end;

C++ Builder:
void __fastcall TForm1::auHTTP1UploadProgress(TObject *Sender,
 AnsiString ContentType, int FileSize, int BytesRead,
 int ElapsedTime, int EstimatedTimeLeft,
 BYTE PercentsDone, float TransferRate, TStream *Stream)
{
 // progress bar position
 ProgressCurrentFile->Position = PercentsDone;

 // file size
 FileSizeLabel->Caption =
 Format("File size: %.1f Kb:",
 ARRAYOFCONST(((float)FileSize / 1024)));

 // downloaded (in Kb)
 DownloadedLabel->Caption =
 Format("Downloaded: %.1f Kb:",
 ARRAYOFCONST(((float)BytesRead / 1024)));

 // transfer rate
 TransRateLabel->Caption =
 Format("Transfer rate: %.1f Kb/s",
 ARRAYOFCONST(((float)TransferRate)));

 // estimated time left
 EstTimeLeftLabel->Caption =
 Format("Estimated time left: %d:%.2d:%.2d",
 ARRAYOFCONST((EstimatedTimeLeft / 60 / 60, // hours
 EstimatedTimeLeft / 60 % 60, // minutes
 EstimatedTimeLeft % 60 % 60))); // seconds
}

See also
Upload method;
OnUploadFieldRequest and OnUploadCGITimeoutFailed events.

6.4.18 OnWaitTimeoutExpired

Applies to
auHTTP and auThread components.

Declaration
var
 TauThreadWaitTimeoutExpired = procedure(Sender: TObject; var
TerminateThread: Boolean) of object;

property OnWaitTimeoutExpired: TauThreadWaitTimeoutExpired;

Description
The OnWaitTimeoutExpired event occurs when the component could not complete HTTP request
for the time interval specified in WaitTimeout property (when WaitTimeout is expired).

AutoUpgrader Professional92

© 1999-2002, UtilMind Solutions®

 The TherminateThread is optional parameter (True by default), which allows to terminate, or
prevent termination of thread in case if specified time interval is expired before completion of
execution of the thread.

Notes
The WaitTimeout only works together with WaitThread property, only when it set to True.

See also
WaitThread and WaitTimeout properties;
Abort method.

6.5 Appendix: HTTP status codes

The following table contains the constants and corresponding values for the HTTP status codes
returned by HTTP servers. Following constants defined in "WinInet.pas" module.

Constants
// 1xx: Informational - Request received, continuing process

 HTTP_STATUS_CONTINUE (100)

The request can be continued.

 HTTP_STATUS_SWITCH_PROTOCOLS (101)

The server has switched protocols in an upgrade header.

// 2xx: Success - The action was successfully received, understood, and accepted

 HTTP_STATUS_OK (200)

The request completed successfully.

 HTTP_STATUS_CREATED (201)

The request has been fulfilled and resulted in the creation of a new resource.

 HTTP_STATUS_ACCEPTED (202)

The request has been accepted for processing, but the processing has not been completed.

 HTTP_STATUS_PARTIAL (203)

The returned meta information in the entity-header is not the definitive set available from the
origin server.

 HTTP_STATUS_NO_CONTENT (204)

The server has fulfilled the request, but there is no new information to send back.

 HTTP_STATUS_RESET_CONTENT (205)

The request has been completed, and the client program should reset the document view that
caused the request to be sent to allow the user to easily initiate another input action.

 HTTP_STATUS_PARTIAL_CONTENT (206)

The server has fulfilled the partial GET request for the resource.

// 3xx: Redirection - Further action must be taken in order to complete the request

 HTTP_STATUS_AMBIGUOUS (300)

The server couldn't decide what to return.

 HTTP_STATUS_MOVED (301)

The requested resource has been assigned to a new permanent URI (Uniform Resource
Identifier), and any future references to this resource should be done using one of the
returned URIs.

auHTTP 93

© 1999-2002, UtilMind Solutions®

 HTTP_STATUS_REDIRECT (302)

The requested resource resides temporarily under a different URI (Uniform Resource
Identifier).

 HTTP_STATUS_REDIRECT_METHOD (303)

The response to the request can be found under a different URI (Uniform Resource Identifier)
and should be retrieved using a GET HTTP verb on that resource.

 HTTP_STATUS_NOT_MODIFIED (304)

The requested resource has not been modified.

 HTTP_STATUS_USE_PROXY (305)

The requested resource must be accessed through the proxy given by the location field.

 HTTP_STATUS_REDIRECT_KEEP_VERB (307)

The redirected request keeps the same HTTP verb. HTTP/1.1 behavior.

4xx: Client Error - The request contains bad syntax or cannot be fulfilled

 HTTP_STATUS_BAD_REQUEST (400)

The request could not be processed by the server due to invalid syntax.

 HTTP_STATUS_DENIED (401)

The requested resource requires user authentication.

 HTTP_STATUS_PAYMENT_REQ (402)

Not currently implemented in the HTTP protocol.

 HTTP_STATUS_FORBIDDEN (403)

The server understood the request, but is refusing to fulfill it.

 HTTP_STATUS_NOT_FOUND (404)

The server has not found anything matching the requested URI (Uniform Resource Identifier).

 HTTP_STATUS_BAD_METHOD (405)

The HTTP verb used is not allowed.

 HTTP_STATUS_NONE_ACCEPTABLE (406)

No responses acceptable to the client were found.

 HTTP_STATUS_PROXY_AUTH_REQ (407)

Proxy authentication required.

 HTTP_STATUS_REQUEST_TIMEOUT (408)

The server timed out waiting for the request.

 HTTP_STATUS_CONFLICT (409)

The request could not be completed due to a conflict with the current state of the resource.
The user should resubmit with more information.

 HTTP_STATUS_GONE (410)

The requested resource is no longer available at the server, and no forwarding address is
known.

 HTTP_STATUS_LENGTH_REQUIRED (411)

The server refuses to accept the request without a defined content length.

 HTTP_STATUS_PRECOND_FAILED (412)

The precondition given in one or more of the request header fields evaluated to false when it
was tested on the server.

 HTTP_STATUS_REQUEST_TOO_LARGE (413)

AutoUpgrader Professional94

© 1999-2002, UtilMind Solutions®

The server is refusing to process a request because the request entity is larger than the server
is willing or able to process.

 HTTP_STATUS_URI_TOO_LONG (414)

The server is refusing to service the request because the request URI (Uniform Resource
Identifier) is longer than the server is willing to interpret.

 HTTP_STATUS_UNSUPPORTED_MEDIA (415)

The server is refusing to service the request because the entity of the request is in a format
not supported by the requested resource for the requested method.

 HTTP_STATUS_RETRY_WITH (449)

The request should be retried after doing the appropriate action.

5xx: Server Error - The server failed to fulfill an apparently valid request

 HTTP_STATUS_SERVER_ERROR (500)

The server encountered an unexpected condition that prevented it from fulfilling the request.

 HTTP_STATUS_NOT_SUPPORTED (501)

The server does not support the functionality required to fulfill the request.

 HTTP_STATUS_BAD_GATEWAY (502)

The server, while acting as a gateway or proxy, received an invalid response from the
upstream server it accessed in attempting to fulfill the request.

 HTTP_STATUS_SERVICE_UNAVAIL (503)

The service is temporarily overloaded.

 HTTP_STATUS_GATEWAY_TIMEOUT (504)

The request was timed out waiting for a gateway.

 HTTP_STATUS_VERSION_NOT_SUP (505)

The server does not support, or refuses to support, the HTTP protocol version that was used in
the request message.

6.6 HTTPReadString

Unit
auHTTP

Declaration
function HTTPReadString(const URL: String; Timeout: Integer = 0):
String;

Description
The HTTPReadString function provides extremely simple way to receive some data from the Web by
HTTP protocol, without using auHTTP component and specifying its properties and handling the
events. You just need to specify the URL (and optionally Timeout) and function will return
downloaded data (or empty string, if remote host are unreachable or connection failed).

Return value is the downloaded string, or empty string, which means that download failed for some
reason.

Parameters

 URL specifies the URL of document which you wish to download;

 Timeout optional parameter, which specifies the time-out for downloading (in milliseconds). If a

connection request takes longer than this time-out value, the request is cancele and

auHTTP 95

© 1999-2002, UtilMind Solutions®

function returns empty string (which means that download failed). Zero timeout (0)
means infinite, thus the function will try to download the data without any forced
interrupts.

 Remarks
1. Don't forget to add "auHTTP" into uses clause of your unit before using this function.
2. When you call this function, the execution of procedure from which the call are made, will

suspended for some time, until the HTTP request will be complete or failed (it looks just like if
you'd used auHTTP component with WaitThread property set to True).

Example
var
 Config: String;
begin
 Config := HTTPReadString('www.yourdomain.com/some_configuration.ini');
 if Config <> '' then
 begin
 // deal with downloaded string
 end;

 // ANOTHER EXAMPLE: read the same config file with 10 seconds timeout
 Config := HTTPReadString('www.yourdomain.com/some_configuration.ini',
10000);
 if Config <> '' then
 begin
 // deal with downloaded string
 end;
end;

See also
Timeouts and WaitThread properties of auHTTP component.

7 auThread

7.1 TauThread

Overview
The auThread component is enhancement of standard invisible TThread class. Extremely easy to
use, since you can specify properties and events directly in Object Inspector as in any usual
component, and contains much more features.

How to use ?
For example, you need to run process which will take a lot of time to be completed. This can be
anything, sorting big arrays, copying, searching or downloading the data and so forth… Anything
that will take rather much time but should not stop and even slow down user interface and other
processes…

Well, simply drop the auThread component onto your form and specify all actions of this thread in
the OnExecute event handler. To execute thread — call Execute method. To terminate — call
Terminate. If you wish to suspend thread temporary, without total termination — use Suspended
property (set it to True to suspend and to False to resume thread), or Suspend/Resume methods.

If your thread needs to send output to the main VCL thread, or just make some specific actions in

AutoUpgrader Professional96

© 1999-2002, UtilMind Solutions®

your forms (i.e: fill the list view or increase position of the progress bar), you must synchronize
actions between different threads to avoid multi-thread conflicts. To synchronize threads and
complete some operations in main VCL thread — use Synchronize method.

To change scheduling priority of thread — use Priority property. To be notified when thread
terminated — write it to the OnTerminate event handler

Sample code
You can download the example which demonstrates how to use auThread component from
http://www.appcontrols.com/demos/threaddemo.zip, or compiled executable from
http://www.appcontrols.com/demos/exe/ThreadDemo.exe.

See also other components with built-in auThread component:
auHTTP and auAutoUpgrader.

7.2 Properties

7.2.1 Handle

Applies to
auThread component.

Declaration
property Handle: THandle; // read-only!

Description
Handle is the read-only property which contains the thread's handle. Use Handle when calling
Win32 API functions for thread manipulation.

See also
ThreadID property.

7.2.2 HandleExceptions

Applies to
auThread component.

Declaration
property HandleExceptions: Boolean; // True by default

Description
The HandleException property determines whether the thread should automatically handle all
exceptions which occurs on it's execution, without raising exception, or you would like to handle
exceptions "manually" in OnExecute event handler.

Set HandleException to True if you don't want to allow to raise an exceptions and/or handle
exceptions in OnException event. Set HandleException to False if you wish to handle exceptions
within OnExecute event handler (see excample below).

Example
{ "manual" handling of exceptions within OnExecute event handler (when HandleException =
False) }
procedure TForm1.QueryThreadExecute(Sender: TObject);
begin
 with Query1 do
 try

http://www.appcontrols.com/demos/threaddemo.zip
http://www.appcontrols.com/demos/exe/ThreadDemo.exe

auThread 97

© 1999-2002, UtilMind Solutions®

 ExecSQL;
 except
 // handle exception "manually"
 end;
end;

See also
OnException and OnExecute events.

7.2.3 Priority

Applies to
auThread component.

Declaration
property Priority: TThreadPriority;

Description
Priority indicates the priority used when scheduling the thread. Adjust the priority higher or lower as
needed.

TThreadPriority type defines the possible values for the Priority property of the auThread
component, as defined in the following table. The system schedules CPU cycles to each thread
based on a priority scale; the Priority property adjusts a thread's priority higher or lower on the scale.

Values Meaning

 tpIdle The thread executes only when the system is idle. The system will not interrupt
other threads to execute a thread with tpIdle priority.

 tpLowest The thread's priority is two points below normal.

 tpLower The thread's priority is one point below normal.

 tpNormal The thread has normal priority.

 tpHigher The thread's priority is one point above normal.

 tpHighest The thread's priority is two points above normal.

 tpTimeCritical The thread gets highest priority.

Warning
Boosting the thread priority of a CPU intensive operation may "starve" the other threads in the
application. Only apply priority boosts to threads that spend most of their time waiting for external
events.

7.2.4 ReturnValue

Applies to
auThread component.

Declaration
property ReturnValue: Integer;

Description
The ReturnValue property specifies the value returned to other waiting threads when the thread
finishes executing.

Use ReturnValue to indicate success/failure or numeric result/output of the thread to the application
or other threads. The WaitFor method returns the value stored in ReturnValue.

AutoUpgrader Professional98

© 1999-2002, UtilMind Solutions®

See also
WaitFor method.

7.2.5 Running

Applies to
auThread component.

Declaration
property Running: Boolean; // Read only !!

Description
Running is the read-only property used to determinate whether the thread is currently running and
processes operations specified in the OnExecute event handler.

See also
Suspended property and OnExecute method.

7.2.6 Suspended

Applies to
auThread and auHTTP components.

Declaration
property Suspended: Boolean;

Description
The Suspended property indicates whether a thread is suspended.

Set Suspended to True to suspend a thread (suspend processing of OnExecute event handler); set
it to False to resume it. Suspended threads do not continue execution until they are resumed.

See also
Suspend and Resume methods.
OnExecute event.

7.2.7 Terminated

Applies to
auThread component.

Declaration
property Terminated: Boolean;

Description
The Terminated property Indicates whether the thread has been asked to terminate.

The thread's Execute method and any methods that Execute calls (in OnExecute event handler)
should check Terminated periodically and exit when it's True. The Terminate method sets the
Terminated property to True.

The Terminate method is the polite way to abort the execution of a thread, but it requires
cooperation from the thread's OnExecute code. Using Terminate is recommended over the
TerminateThread Win32 API call.

See also

auThread 99

© 1999-2002, UtilMind Solutions®

Execute and Terminate methods;
OnExecute event.

7.2.8 ThreadID

Applies to
auThread component.

Declaration
property ThreadID: THandle; // Read only !!

Description
The ThreadID is the read-only handle which identifies the thread throughout the system.

Use ThreadID, during debugging, to identify the thread in the Threads status box. ThreadID is also
useful when calling Win32 API functions for manipulating the thread.

Note
ThreadID is different than the thread's handle in the Handle property.

See also
Handle property.

7.2.9 WaitThread

Applies to
auThread and auHTTP components.

Declaration
property WaitThread: Boolean;

Description
The WaitThread property controls whether the procedure that calls the Execute method should be
suspended and wait until the scanning process will be done.

Set the WaitThread to True, if you would like to process some operations in separate thread so that
the application does not continue with next lines of code after calling the Execute method. Your
application will done execution of the thread before continuing to next step.

 If your application can't infinitely wait, until the the thread execution will be completed, and want to
set for some limited time interval for the execution — specify WaitTimeout property.

See also
WaitTimeout and Suspended properties;
Execute method.

7.2.10 WaitTimeout

Applies to
auThread and auHTTP components.

Declaration
property WaitTimeout: Integer;

Description
The WaitTimeout property specifies the time interval (limit), in milliseconds unit, which application

AutoUpgrader Professional100

© 1999-2002, UtilMind Solutions®

able to wait until the thread will be terminated.

For example, if the maximum time which you can allow for execution of this thread is 5 seconds, set
this value to 5000 (milliseconds). If application can wait infinitely, set WaitTimeout to 0.

 When the timeout is expired, the component automatically terminates the HTTP request. To be
notified when the WaitTimeout is expired — write OnWaitTimeoutExpired event handler.

Notes
The WaitTimeout only works together with WaitThread property, only when it set to True.

See also
WaitThread, ThreadPriority and Suspended properties;
Execute and Execute methods;
OnWaitTimeoutExpired event.

7.3 Methods

7.3.1 Execute

Applies to
auThread component.

Declaration
procedure Execute;

Description
Call Execute method to start the thread and initiate the processes described in the OnExecute
event handler.

The Execute method will terminate the thread (if it already Running) and restart current thread
again.

Function can return False if WaitTimeout is expired (if you waiting for completion of request in the
function that calls this medod, using WaitThread property).

See also
WaitThread and WaitTimeout properties;
Suspend, Resume, Synchronize and Terminate methods;
OnExecute event.

7.3.2 Resume

Applies to
auThread component.

Declaration
procedure Resume;

Description
The Resume method resumes a paused (suspended) thread and continue its execution.

See also
Suspended property;
Suspend, Execute, Synchronize and Terminate methods.

auThread 101

© 1999-2002, UtilMind Solutions®

7.3.3 Suspend

Applies to
auThread component.

Declaration
procedure Suspend;

Description
The Suspend method pauses a running thread.

Call Suspend to temporarily halt execution of the thread. To resume execution after a call to
Suspend, call Resume (or set Suspended property to True). Calls to Suspend can be nested;
Resume must be called the same number of times Suspend was called before the thread will
resume execution.

See also
Suspended property;
Execute, Resume, Synchronize and Terminate methods.

7.3.4 Synchronize

Applies to
auThread component.

Declaration
procedure Synchronize(Method: TThreadMethod);

Description
The Synchronize method executes a method call within the main VCL thread. Synchronize causes
the call specified by Method to be executed using the main VCL thread, thereby avoiding multi-
thread conflicts. If you are unsure whether a method call is thread-safe, call it from within the main
VCL thread by passing it to the Synchronize or SynchronizeEx methods.

 Execution of the thread is suspended while Method is executing in the main VCL thread.

Example
procedure TForm1.SynchronizedOutput;
begin
 OutputBox1.Items.Add(Variable1);
 Label1.Caption := Variable2;
end;

procedure TForm1.auThread1Execute(Sender: TObject);
begin
 //...
 StrVariable := StrData1;
 IntVariable := IntData2;
 Synchronize(SynchronizedOutput);
 //...
end;

See also
Execute, Suspend, Resume and Terminate methods.

AutoUpgrader Professional102

© 1999-2002, UtilMind Solutions®

7.3.5 SynchronizeEx

Applies to
auThread component.

Declaration
procedure SynchronizeEx(Method: TNotifyEvent; Params: Pointer);

Description
The SynchronizeEx method executes a method call within the main VCL thread. Synchronize
causes the call specified by Method to be executed using the main VCL thread, thereby avoiding
multi-thread conflicts. If you are unsure whether a method call is thread-safe, call it from within the
main VCL thread by passing it to the Synchronize or SynchronizeEx methods.

Internally, the SynchronizeEx works exactly like Synchronize, but allows to tramsmit additional
parameters (Params) to the synchronized method. See example below.

 Execution of the thread is suspended while Method is executing in the main VCL thread.

Example
type
 TForm1 = class(TForm)
 auThread1: TauThread;
 procedure auThread1Execute(Sender: TObject);
 private
 procedure SyncCall(Sender: TObject);
 public
 end;

implementation

type
 PMyData = ^TMyData;
 TMyData = record
 I: Integer;
 S: String;
 end;

procedure TForm1.auThread1Execute(Sender: TObject);
var
 Data: TMyData;
begin
 // -- snip --
 with Data do
 begin
 S := 'some text';
 I := Random(100); // some number
 end;
 auThread1.SynchronizeEx(SyncCall, @Data);
 // -- snip --
end;

procedure TForm1.SyncCall(Sender: TObject);
begin
 with PMyData(Sender)^ do
 begin

auThread 103

© 1999-2002, UtilMind Solutions®

 // Here you getting access to the parameters
 // described in TMyData structure. Example:
 Application.MessageBox(PChar(S), PChar(IntToStr(I)), MB_OK);
 end;
end;

See also
Synchronize, Execute, Suspend, Resume and Terminate methods.

7.3.6 Terminate

Applies to
auThread component.

Declaration
procedure Terminate(Forced: Boolean);

Description
The Terminate method aborts execution of thread.

See also
Execute, Suspend, Resume and Synchronize methods.

7.3.7 WaitFor

Applies to
auThread component.

Declaration
function WaitFor: Integer;

Description

See also
Execute, Suspend, Resume, Synchronize and Terminate methods.

7.4 Events

7.4.1 OnException

Applies to
auThread component.

Declaration
property OnException: TNotifyEvent;

Description
The OnException event occurs if something has been failed on execution of thread, in the
OnExecute event handler.

Note that OnException event will NOT occurs if HandleExceptions property = False, that means that
you would like to handle exceptions "manually" in OnExecute event handler.

See also
OnExecute and OnTerminate events;
HandleExceptions property.

AutoUpgrader Professional104

© 1999-2002, UtilMind Solutions®

7.4.2 OnExecute

Applies to
auThread component.

Declaration
property OnExecute: TNotifyEvent;

Description
The OnExecute event occurs when the thread ready to execute new process.

Write OnExecute event handler to make some specific operations in the separate process without
suspending of main application thread (without blocking of user interface).

Example 1:
procedure TForm1.ConnectThreadExecute(Sender: TObject);
begin
{ this can take very long time and suspend the application }
 mySQLDatabase1.Connected := True;
end;

Example 2:
procedure TForm1.auThread1Execute(Sender: TObject);

 procedure ScanDir(Dir: String);
 var
 FindHandle: THandle;
 FindData: TWin32FindData;
 begin
 FindHandle := FindFirstFile(PChar(Dir + '*.*'), FindData);
 if FindHandle <> INVALID_HANDLE_VALUE then
 try
 repeat
 if (String(FindData.cFileName) <> '.') and
 (String(FindData.cFileName) <> '..') then
 begin
 if Sender = auThread1 then
 begin
 FileName1 := Dir + FindData.cFileName;
 auThread1.Synchronize(SyncFileFound1);
 end
 else
 begin
 FileName2 := Dir + FindData.cFileName;
 auThread2.Synchronize(SyncFileFound2);
 end;

 if (FindData.dwFileAttributes and FILE_ATTRIBUTE_DIRECTORY =
FILE_ATTRIBUTE_DIRECTORY) then
 ScanDir(Dir + FindData.cFileName + '\');
 end;
 until not FindNextFile(FindHandle, FindData) or (Sender as
TauThread).Terminated
 finally
 Windows.FindClose(FindHandle);
 end;
 end;

auThread 105

© 1999-2002, UtilMind Solutions®

begin
 ScanDir('c:\');
end;

// methods synchronized with main application thread
procedure TForm1.SyncFileFound1;
begin
 ListBox1.Items.Add(FileName1);
 Label1.Caption := 'Files: ' + IntToStr(ListBox1.Items.Count);
end;

procedure TForm1.SyncFileFound2;
begin
 ListBox2.Items.Add(FileName2);
 Label2.Caption := 'Files: ' + IntToStr(ListBox2.Items.Count);
end;

See also
OnException and OnTerminate events.

7.4.3 OnTerminate

Applies to
auThread component.

Declaration
property OnTerminate: TNotifyEvent;

Description
The OnTerminate method occurs after the termination of thread, when thread done all processes in
the OnExecute event handler

See also
OnException and OnExecute events.

7.4.4 OnWaitTimeoutExpired

Applies to
auThread and auHTTP components.

Declaration
property OnWaitTimeoutExpired: TNotifyEvent;

Description
The OnWaitTimeoutExpired event occurs when the component did not finished execution for the
time interval specified in WaitTimeout property (when WaitTimeout is expired).

Notes
The WaitTimeout only works together with WaitThread property, only when it set to True.

See also
WaitThread and WaitTimeout properties;
Terminate method.

Index
- A -
auAutoUpgrader 10

auHTTP 47

auThread 95

AutoUpgrader Pro 10

- C -
Components Overview 5

- H -
HTTP status codes 92

- I -
InfoFile Designer for AutoUpgrader 46

Info-File example 41

Information File example 41

Installation Instructions 5

- L -
License Agreement 8

- O -
Overview 5

- R -
Registration Information 7

- S -
Self-upgrading mechanism 43

- T -
TauAutoUpgrader 10

Abort 28

AutoCheck 11

AutoCheckDelay 12

CacheOptions 12

CheckUpdate 29

HTTPPassword 13

HTTPUsername 14

InfoFile 14

InfoFile Designer 46

InfoFile example 41

InfoFileURL 16

InternetOptions 17

MiscFilesUpgrade 18

OnAborted 30

OnAfterRestart 30

OnBeginUpgrade 31

OnConnLost 32

OnDoOwnCloseAppMethod 32

OnEndUpgrade 33

OnFileDone 33

OnFileStart 33

OnHostUnreachable 34

OnLaterUpgrade 35

OnLostFile 36

OnNoInfoFile 37

OnNoUpdateAvailable 37

OnPasswordRequest 38

OnProgress 39

OnProxyAuthenticationRequest 41

Proxy 18

RestartParams 21

Screenshot1 44

Screenshot2 45

Screenshot3 46

Screenshot4 46

ShowMessages 22

ThreadPriority 23

TransferBufferSize 24

VersionControl 24

VersionDate 25

VersionDateAutoSet 25

VersionNumber 25

Wizard 26

TauAutoUpgraderInfo 14

Files 14

AutoUpgrader Professional106

© 1999-2002, UtilMind Solutions®

TauAutoUpgraderInfo 14

UpgradeMethod 15

UpgradeMsg 15

TauAutoUpgraderWizard 26

Enabled 26

HideFileLocation 27

Language 27

Pic118x218 28

StayOnTop 28

TauHTTP 47

Abort 69

AcceptTypes 49

AddHeaders 50

Agent 51

Busy 51

CacheOptions 51

FileName 52

HideOutputFile 52

HostName 53

InternetOptions 54

IsGlobalOffline 69

OnAborted 74

OnAnyError 74

OnBeforeSendRequest 74

OnConnLost 75

OnDone 76

OnDoneInterrupted 77

OnHeaderInfo 77

OnHostUnreachable 79

OnHTTPError 80

OnOutputFileError 82

OnPasswordRequest 82

OnProgress 83

OnProxyAuthenticationRequest 85

OnRedirected 86

OnUploadCGITimeoutFailed 86

OnUploadFieldRequest 86

OnUploadProgress 89

OnWaitTimeoutExpired 91

OutputFileAttributes 55

Password 56

Pause 70

POSTData 57

Proxy 57

Range 60

Read 70

ReadRange 72

Referer 61

RequestMethod 62

Resume 71

Suspended 63

Thread 65

ThreadPriority 65

Timeouts 64

TransferBufferSize 66

Upload 72

UploadByFieldNames 73

URL 66

Username 67

WaitThread 67

WaitTimeout 68

WorkOffline 68

TauHTTPProxy 57

AccessType 58

ProxyBypass 58

ProxyPassword 59

ProxyPort 59

ProxyServer 60

ProxyUsername 60

TauHTTPRange 60

EndRange 61

StartRange 61

TauHTTPShowGoOnlineMessage 63

TauHTTPTimeouts 64

ConnectTimeout 64

ReceiveTimeout 65

SendTimeout 65

TauThread 95

Execute 100

Handle 96

HandleExceptions 96

OnException 103

OnExecute 104

OnTerminate 105

OnWaitTimeoutExpired 105

Priority 97

Resume 100

ReturnValue 97

Running 98

Suspend 101

Suspended 98

Synchronize 101

SynchronizeEx 102

Terminate 103

Terminated 98

ThreadID 99

WaitFor 103

WaitThread 99

Index 107

© 1999-2002, UtilMind Solutions®

TauThread 95

WaitTimeout 99

- U -
Upgrade Information File 41

AutoUpgrader Professional108

© 1999-2002, UtilMind Solutions®

	Components Overview
	Installation Instructions
	Registration Information
	License Agreement
	auAutoUpgrader
	TauAutoUpgrader
	Properties
	AutoCheck
	AutoCheckDelay
	CacheOptions
	HTTPPassword
	HTTPUsername
	InfoFile
	Files
	UpgradeMethod
	UpgradeMsg

	InfoFileURL
	InternetOptions
	MiscFilesUpgrade
	Proxy
	AccessType
	ProxyBypass
	ProxyPassword
	ProxyPort
	ProxyServer
	ProxyUsername

	RestartParams
	ShowMessages
	ThreadPriority
	TransferBufferSize
	VersionControl
	VersionDate
	VersionDateAutoSet
	VersionNumber
	Wizard
	Enabled
	HideFileLocation
	Language
	Pic118x218
	StayOnTop

	Methods
	Abort
	CheckUpdate
	RestartApplication

	Events
	OnAborted
	OnAfterRestart
	OnBeginUpgrade
	OnConnLost
	OnDoOwnCloseAppMethod
	OnEndUpgrade
	OnFileDone
	OnFileStart
	OnHostUnreachable
	OnLaterUpgrade
	OnLostFile
	OnNoInfoFile
	OnNoUpdateAvailable
	OnPasswordRequest
	OnProgress
	OnProxyAuthenticationRequest

	Upgrade Information File
	Self-upgrading mechanism
	Calculation of upgrades
	Screenshots
	Application update wizard
	Multi-language support
	Access to protected area
	Info-file designer

	auHTTP
	TauHTTP
	Properties
	AcceptTypes
	AddHeaders
	Agent
	Busy
	CacheOptions
	FileName
	HideOutputFile
	HostName
	InternetOptions
	OutputFileAttributes
	OutputFileName
	Password
	POSTData
	Proxy
	AccessType
	ProxyBypass
	ProxyPassword
	ProxyPort
	ProxyServer
	ProxyUsername

	Range
	EndRange
	StartRange

	Referer
	RequestMethod
	ShowGoOfflineMessage
	Suspended
	Timeouts
	ConnectTimeout
	ReceiveTimeout
	SendTimeout

	Thread
	ThreadPriority
	TransferBufferSize
	URL
	Username
	WaitThread
	WaitTimeout
	WorkOffline

	Methods
	Abort
	IsGlobalOffline
	Pause
	Read
	Resume
	ReadRange
	Upload
	UploadByFieldNames

	Events
	OnAborted
	OnAnyError
	OnBeforeSendRequest
	OnConnLost
	OnDone
	OnDoneInterrupted
	OnHeaderInfo
	OnHostUnreachable
	OnHTTPError
	OnOutputFileError
	OnPasswordRequest
	OnProgress
	OnProxyAuthenticationRequest
	OnRedirected
	OnUploadCGITimeoutFailed
	OnUploadFieldRequest
	OnUploadProgress
	OnWaitTimeoutExpired

	Appendix: HTTP status codes
	HTTPReadString

	auThread
	TauThread
	Properties
	Handle
	HandleExceptions
	Priority
	ReturnValue
	Running
	Suspended
	Terminated
	ThreadID
	WaitThread
	WaitTimeout

	Methods
	Execute
	Resume
	Suspend
	Synchronize
	SynchronizeEx
	Terminate
	WaitFor

	Events
	OnException
	OnExecute
	OnTerminate
	OnWaitTimeoutExpired

